METALATIONS BY ORGANOLITHIUM COMPOUNDS

J. M. MALLAN AND R. L. BEBB

Central Research Laboratory, The Firestone Tire and Rubber Company, Akron, Ohio 44317

Received January 3, 1969

Contents

I.	Inti	693				
II.	His	tory and General Scope of Metalation	693			
	А.	History	693			
	B.	Metalating Agents	694			
	С.	Complexes of Metalating Agents	695			
	D.	Structure of Organolithium Compounds	695			
III.	Sol	vents	696			
IV.	Pro	perties of the Compounds Metalated	698			
	Α.	Hydrocarbon Acidity	698			
	В.	Derivatives	699			
	C.	Color of Metalated Compounds	699			
	D.	Mechanism and Kinetics	699			
V.	Туţ	oes of Compounds Metalated	701			
	А.	Metalation of Hydrocarbons	701			
	B.	Metalation of Oxygen Compounds	702			
	C.	Metalation of Sulfur Compounds	705			
	D.	Metalation of Nitrogen Compounds	708			
	E.	Metalation of Mixed				
		Heterocyclic Compounds	710			
	F.	Metalation of Group IVA Compounds	711			
	G.	Metalation of Haloorganic Compounds	712			
	H.	Metalation of Metallocenes	713			
	I.	Metalation of Phosphorus Compounds	713			
	J.	Metalation of Organoboron Compounds	714			
VI.	Sur	nmary and General Trends in				
	Organolithium Research					
VII.	Glossary and Tables					

1. Introduction

Metalation by organolithium compounds has become increasingly important in many areas of chemistry. A table of patents listing the catalytic applications of lithium for polymerization reactions gives an idea of their industrial importance,1 and the great impact of organolithium compounds on the synthetic rubber industry cannot be overlooked.²⁻⁴

Academic interest in the field of metalation by organolithium compounds has centered on three main areas: the position of metalation; the mechanism, including structure and kinetic studies; and the synthetic methods involved. In the earlier years covered by this review, the position of metalation was of primary importance; the present trends emphasize mechanistic studies. The synthetic utility remains important throughout the entire period covered.

This review is limited to the metalation of organic com-

pounds by organolithium compounds. The term metalation is used in its broadest sense to describe a substitution reaction in which an acidic hydrogen is replaced by a metal to produce a true organometallic compound. This review covers only those reactions which utilize an organolithium reagent as the metalating agent, as illustrated for the reaction between ethyllithium (1) and fluorene (2). All references to the use of organolithium reagents as catalytic agents, as in the polymerization of olefins, and additions across the double bond, as in the azomethine linkage in pyridines, have been omitted. Also omitted are all examples where the lithium becomes attached to an atom other than a group IVA element, i.e., carbon, silicon, tin, germanium, and lead.

Metalations by organolithium reagents were reviewed by Gilman⁵ and covered the literature through 1952; reviews on other aspects of lithium chemistry are also available.⁶⁻¹⁹ It is the purpose of this review to emphasize the advances made since that time, to define the present state of the art, and to indicate areas for further basic research.

The literature from 1952 through 1966 has been surveyed. A few references, in which the experimental details, procedures, and products were too obscure to be reported accurately, have been intentionally omitted.

II. History and General Scope of Metalation

A. HISTORY

Schlenk and Bergmann²⁰ first reported a metalation reaction in 1928 after they discovered that ethyllithium (1) reacts with fluorene (2) by replacing an acidic hydrogen to produce fluor-

(15) D. L. Esmay, Advances in Chemistry Series, No. 23, American Chemical Society, Washington, D. C., 1959, p 46.

(16) H. Gilman, Bull. Soc. Chim. France, 1356 (1963).

⁽¹⁾ C. W. Kamienski, Ind. Eng. Chem., 57, 38 (1965).

⁽²⁾ J. H. Harwood, "Industrial Applications of the Organometallic Compounds," Reinhold Publishing Corp., New York, N. Y., 1963.

⁽³⁾ F. W. Stavely, et al., Ind. Eng. Chem., 48, 778 (1956).

⁽⁴⁾ R. S. Stearns and L. E. Forman, J. Polymer Sci., 41, 381 (1959).

⁽⁵⁾ H. Gilman and J. W. Morton, Jr., Org. Reactions, 8, 258 (1954).

⁽⁶⁾ E. A. Braude, Progr. Org. Chem., 3, 172 (1955).

⁽⁷⁾ T. L. Brown, Advan. Organometal. Chem., 3, 365 (1965).

⁽⁸⁾ G. E. Coats, "Organometallic Compounds," 2nd ed (revised), John Wiley and Sons, Inc., New York, N. Y., 1960.

⁽⁹⁾ R. E. Dessy, Chem. Eng. News, 41, 136 (1963).

⁽¹⁰⁾ R. E. Dessy and W. Kitching, Advan. Organometal. Chem., 4, 267 (1966).

⁽¹¹⁾ R. E. Dessy and F. Paulik, J. Chem. Educ., 40, 185 (1963).

⁽¹²⁾ G. G. Eberhardt, Organometal. Chem. Rev., 1, 491 (1966).

⁽¹³⁾ J. O. Edwards and R. G. Pearson, J. Am. Chem. Soc., 84, 16 (1962).

⁽¹⁴⁾ J. J. Eisch and H. Gilman, Advan. Inorg. Chem. Radiochem., 2, 61 (1960).

⁽¹⁷⁾ R. G. Jones and H. Giiman, Chem. Rev., 54, 835 (1954).

⁽¹⁸⁾ J. Vidal and Y. Chauvin, Rev. Inst. France Petrole Ann. Combust. Liquides, 19, 1218 (1964).

⁽¹⁹⁾ J. Vidal and Y. Chauvin, ibid., 19, 1319 (1964).

⁽²⁰⁾ W. Schlenk and E. Bergmann, Ann., 463, 98 (1928).

enyllithium (3) and ethane (4). This reaction has been expanded during the years to include most compounds which contain an acidic hydrogen. The reaction is not restricted to those compounds which contain a classical acidic hydrogen, since the metalation of phenyllithium (5) has been reported.²¹

Ziegler's discovery²² that alkyl halides will react with lithium metal in ether or benzene to yield organolithium compounds has made these reagents readily available, and the work of Gilman and others has demonstrated the great synthetic utility of the metalation reaction.^{5,6}

B. METALATING AGENTS

The most commonly used metalating agents are butyl- and phenyllithium. While these are not the most reactive organolithium compounds, they are the most readily available. Butyllithium is more frequently used because it is the more reactive of the two. In addition, butane, the secondary product of the metalation, escapes from the reaction medium as a gas and thus tends to drive the reaction toward completion, leading to higher yields of metalated product. The other less common organolithium compounds are considered individually in a later section.

The successful preparation of an organolithium reagent is dependent upon all the usual precautionary conditions employed in organometallic reactions.¹⁷

Butyllithium in ether is usually prepared in 80-95% yield from butyl chloride and lithium metal containing 0.05% sodium. Several studies have been initiated to determine the effect of a purer grade metal on the yield. When lithium containing 0.005% sodium was used, the yield decreased to about 50%, a precipitate formed, the lithium became dull instead of shiny, and the temperature was extremely difficult to control.²³ Addition of several pieces of sodium to such a reaction mixture had no effect. Several workers demonstrated that at least 0.02% sodium, intimately mixed with the lithium, was essential for the reaction to proceed normally.²³⁻²⁵ In addition, retention of configuration is reported to be proportional to the amount of sodium present in the lithium.²⁶

(26) H. M. Walborsky and M. S. Aronoff, J. Organometal. Chem., 4, 418 (1965).

The most commonly used procedure to determine the concentration of organolithium compounds is the Gilman double titration.⁵ The method has been studied extensively,^{16, 27–31} since there are inherent difficulties associated with any analysis where the compound under consideration cannot easily be obtained in standardized quantities. Gilman has published a study of the efficiency of various allylic halides used in the titration.²⁹ Certain compounds, such as alkoxides, are known to give erroneous analytical results, and some organolithium compounds, such as methyl- and phenyllithium, are particularly difficult to determine by this method. Several procedures have been reported to avoid these difficulties.^{32, 33}

The preparation of previously unknown organolithium compounds, either in solution or in the crystalline state, has been one of the more recent advances in this field of chemistry. Table III, including some of these new compounds and their method of preparation, appears at the end of this review.

The transmetalation reaction, as exemplified by the preparation of vinyllithium (7) from tetravinyltin (6), is used very effectively for the preparation of many of these new compounds.^{34,35} The product organolithium can be filtered away from the precipitated tetraphenyltin (8), and used either in

$$(CH_2 = CH)_4 Sn \xrightarrow{PhLi}_{hydrocarbon} 4CH_2 = CHLi + Ph_4 Sn$$

solution or further purified. Another advantage to this method of preparation is that the product organolithium is obtained free from lithium halide.

Benzyllithium has been exceedingly difficult to prepare by any of the usual techniques.^{36,37} For example, reaction of benzyl chloride with lithium metal results mainly in the coupling product, bibenzyl,³⁸ and metalation of toluene with butyllithium produces only small yields of the desired organometallic compound.³⁸ Gilman exploited the cleavage of benzylic ethers (9) by lithium metal in THF to provide the first

PhCH₂OCH₃
$$\xrightarrow{\text{Li}}_{\text{THF}}$$
 PhCH₂Li + CH₃OLi
9 10

practical preparation of benzyllithium (10).^{37,39} Benzyllithium has also been prepared by the transmetalation reaction between tribenzyltin chloride (11) and methyllithium (12).⁴⁰

$$(PhCH_2)_3SnCl + 4MeLi \xrightarrow{ether} 3PhCH_2Li + Me_4Sn + LiCl$$
11
12
10

- (27) D. E. Applequist and D. F. O'Brien, J. Am. Chem. Soc., 85, 743 (1963).
- (28) K. C. Eberly, J. Org. Chem., 26, 1309 (1961).
- (29) H. Gilman and F. K. Cartledge, J. Organometal. Chem., 2, 447 (1964).
- (30) H. Gilman, F. K. Cartledge, and S.-Y. Sim, ibid., 1, 8 (1963).
- (31) C. W. Kamienski and D. L. Esmay, J. Org. Chem., 25, 115 (1960).
- (32) P. F. Collins, C. W. Kamienski, D. L. Esmay, and R. B. Ellestad, Anal. Chem., 33, 468 (1961).

- (34) D. Seyferth and M. A. Weiner, J. Am. Chem. Soc., 84, 361 (1962).
- (35) D. Seyferth, M. A. Weiner, L. G. Vaughan, G. Raab, D. E. Welch, H. M. Cohen, and D. L. Alleston, Bull. Soc. Chim. France, 1364 (1963).
- (36) H. Gilman and H. A. McNinch, J. Org. Chem., 26, 3723 (1961).
- (37) H. Gilman, H. A. McNinch, and D. Wittenberg, *ibid.*, 23, 2044 (1958).
- (38) H. Gilman and R. D. Gorsich, J. Am. Chem. Soc., 77, 3134 (1955).
- (39) H. Gilman and G. L. Schwebke, J. Org. Chem., 27, 4259 (1962).
- (40) D. Seyferth, R. Suzuki, C. J. Murphy, and C. R. Sabet, J. Organometal. Chem., 2, 431 (1964).

⁽²¹⁾ D. Bryce-Smith and E. E. Turner, J. Chem. Soc., 861 (1953).

⁽²²⁾ K. Ziegler and H. Colonius, Ann., 479, 135 (1930).

⁽²³⁾ J. A. Beel, W. G. Koch, G. E. Tomasi, D. E. Hermansen, and P. Fleetwood, J. Org. Chem., 24, 2036 (1959).

⁽²⁴⁾ K. C. Eberly, U. S. Patent 3,122,592; Chem. Abstr., 60, 13270 (1964).

⁽²⁵⁾ C. W. Kamienski and D. L. Esmay, J. Org. Chem., 25, 1807 (1960).

⁽³³⁾ H. O. House and W. L. Respess, J. Organometal. Chem., 4, 95 (1965).

Metalation of toluene by the butyllithium-TMEDA (tetramethylethylenediamine) (16) complex, 41, 42 which results in a quantitative yield of benzyllithium-TMEDA within minutes, is currently the most efficient method to prepare benzyllithium.

Triphenylsilyllithium (14) can readily be prepared via tri-

$$SiF_4 + PhMgBr \longrightarrow Ph_3SiF \xrightarrow{II}_{THF} Ph_3SiLi$$
13 14

т:

phenylsilyl fluoride (13).43 This procedure provides easy access to this versatile metalating agent. Gilman has also shown that 14 can be prepared from triphenylsilyl chloride and lithium metal in THF.44

C. COMPLEXES OF METALATING AGENTS

Organolithium compounds form coordination complexes with various materials including neutral Lewis bases, ethers, amines, alkoxides, and lithium halides.12,45-68 In this complexed form, the compounds exhibit remarkably different characteristics depending upon the complexing agent. For example, solid complexes of butyllithium-lithium halide^{53,66} are inert in hydrocarbon solution, but upon addition of ether they are regenerated to conventional organolithium compounds.

Complexes are also formed with ethers and dioxanates 59, 60, 69, 70

- (42) A. W. Langer, Jr., Polymer Preprints, Vol. 7, No. 1, American Chemical Society Division of Polymer Chemistry, Jan 1966, p 132.
- (43) G. Marr and D. E. Webster, J. Organometal. Chem., 2, 93 (1964). (44) H. Zeiss, "Organometallic Chemistry," Reinhold Publishing Corp., New York, N. Y., 1960.
- (45) T. L. Brown, D. W. Dickerhoof, and D. A. Bafus, J. Am. Chem.
- Soc., 84, 1371 (1962).
- (46) T. L. Brown, R. L. Gerteis, D. A. Bafus, and J. A. Ladd, *ibid.*, 86, 2135 (1964).
- (47) T. L. Brown, J. A. Ladd, and G. N. Newman, J. Organometal. Chem., 3, 1 (1965).
- (48) Z. K. Cheema, G. W. Gibson, and J. F. Eastham, J. Am. Chem. Soc., 85, 3517 (1963).
- (49) J. A. Dixon, P. A. Gwinner, and D. C. Lini, ibid., 87, 1379 (1965).
- (50) G. G. Eberhardt and W. A. Butte, J. Org. Chem., 29, 2928 (1964). (51) W. H. Glaze and G. M. Adams, J. Am. Chem. Soc., 88, 4653 (1966).
- (52) W. H. Glaze, J. Lin, and E. G. Felton, J. Org. Chem., 31, 2643 (1966).
- (53) W. H. Glaze and R. West, J. Am. Chem. Soc., 82, 4437 (1960).
- (54) L. Lochmann, J. Pospisil, J. Vodnansky, J. Trekoval, and D. Lim, Collect. Czech. Chem. Commun., 30, 2187 (1965); Chem. Abstr., 63, 7027 (1965).
- (55) G. A. Razuvaev, G. G. Petukhov, R. F. Galiulina, and T. N. Brevnova, J. Gen. Chem. USSR, 31, 2187 (1961).
- (56) C. G. Screttas, Ph.D. Thesis, University of Tennessee, 1966.
- (57) C. G. Screttas and J. F. Eastham. J. Am. Chem. Soc., 87, 3276 (1965).
- (58) F. A. Settle, M. Haggerty, and J. F. Eastham, ibid., 86, 2076 (1964).
- (59) T. V. Talalaeva, M. M. Nad, and K. A. Kocheshkov, Doki. Akad. Nauk SSSR, 109, 101 (1956); Chem. Abstr., 51, 1962 (1957).
- (60) T. V. Talalaeva, A. N. Rodionov, and K. A. Kocheshkov, Proc. Acad. Sci. USSR, 140, 985 (1961).
- (61) R. Waack and M. A. Doran, J. Am. Chem. Soc., 85, 2861 (1963). (62) R. Waack and M. A. Doran, ibid., 85, 4042 (1963).
- (63) R. Waack and M. A. Doran, Chem. Ind. (London), 496 (1964).
- (64) R. Waack and P. West, J. Organometal. Chem., 5, 188 (1966).
- (65) M. Weiner and R. West, J. Am. Chem. Soc., 85, 485 (1963).
- (66) R. West and W. H. Glaze, U. S. Patent 3,082,264; Chem. Abstr., 59, 3956 (1963).
- (67) H. J. S. Winkler and H. Winkler, J. Am. Chem. Soc., 88, 964 (1966).
- (68) H. J. S. Winkler and H. Winkler, ibid., 88, 969 (1966).
- (69) A. N. Rodionov, T. V. Talalaeva, D. N. Shigorin, and K. A. Kocheshkov, Proc. Acad. Sci. USSR, 136, 65 (1961).
- (70) T. V. Talalaeva, A. N. Rodionov, and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1990 (1961); Chem. Abstr., 56, 10173 (1962).

and may even contain lithium halide in a ternary complex, depending upon the mode of preparation. Many of these complexes have been isolated and studied.60

The most interesting complexes, from the synthetic standpoint, are formed from organolithium compounds and tertiary amines. The addition of triethylenediamine (DABCO), (15) in benzene to butyllithium in hydrocarbon produces a

crystalline precipitate of the butyllithium-DABCO complex.56,57 Many of these complexes can serve as metalating agents for compounds which are not ordinarily metalated. For example, toluene is not easily metalated by butyllithium. but is attacked quantitatively by butyllithium-TMEDA, 41, 42 and in at least 85% yield by butyllithium-DABCO.50 Even powdered lithium metal reacts with diamines to give a complex which is capable of metalating certain hydrocarbons.71

While cyclic amines, such as DABCO (15), lead to crystalline precipitates, open-chain ditertiary amines, such as TMEDA (tetramethylethylenediamine) (16), produce stable complexes which are soluble in hydrocarbons;^{41, 42} thus both solid and solution forms of the complexes are available.

D. STRUCTURE OF ORGANOLITHIUM COMPOUNDS

Since the initial discovery that organolithium compounds are polymeric, many studies have been directed toward elucidating their structure. Clearly, the structure must be at least partially understood before kinetic and mechanistic studies attain much significance. The general subject of structure has been reviewed,7 and only the more significant facts will be considered here.

All of the organolithium compounds studied so far are polymeric. The only reported exception to this, lithiomethyltrimethylsilane,72 has been refuted by other workers.78-75 The apparent degree of polymerization varies with both the solvent and the structure and, in general, is higher for straightchain than for branched-chain compounds. This suggests that steric hindrance is an important factor in determining the polymeric form. It is interesting to note, then, that the nalkyllithiums above n-propyl are liquids.7,76 The degree of polymerization (n) is summarized in Table I^{7, 41, 42, 46-48, 77-82} for some of the more common organolithiums. Organolith-

- (72) J. W. Connolly and G. Urry, Inorg. Chem., 2, 645 (1963).
- (73) R. H. Baney and R. J. Krager, ibid., 3, 1657 (1964).
- (74) G. E. Hartwell and T. L. Brown, ibid., 3, 1656 (1964).
- (75) G. E. Hartwell and T. L. Brown, ibid., 5, 1257 (1966).
- (76) R. T. Sanderson, J. Am. Chem. Soc., 77, 4531 (1955).
- (77) T. L. Brown and M. T. Rogers, ibid., 79, 1859 (1957).
- (78) M. T. Rogers and T. L. Brown, J. Phys. Chem., 61, 366 (1957).
- (79) K. B. Piotrovskii and M. P. Ronina, Dokl. Akad. Nauk SSSR, 115, 737 (1957); Chem. Abstr., 52, 3476 (1958).
- (80) D. Margerison and J. P. Newport, Trans. Faraday Soc., 59, 2058
- (1963).
- (81) T. V. Talalaeva, A. N. Rodionov, and K. A. Kocheshkov, Proc. Acad. Sci. USSR, 154, 47 (1964).
- (82) M. Weiner, G. Vogel, and R. West, Inorg. Chem., 1, 654 (1962).

⁽⁴¹⁾ A. W. Langer, Jr., Trans. N. Y. Acad. Sci., 27, 741 (1965).

⁽⁷¹⁾ O. F. Beumel, Jr., and R. F. Harris, J. Org. Chem., 30, 814 (1965).

Table I

Degree of Polymerization (n) of Some Organolithium Compounds

Compound	Solvent	n	Ref
Ethyllithium	Cyclohexane	6	7, 47
	Benzene	6	46, 77, 78
	Benzene	2	79
	Hydrocarbon	6	80
	Diethyl ether	2 (solvated)	48
n-Butyllithium	Cyclohexane	6	80
•	Benzene	6	80
	Benzene	2	79
	Diethyl ether	6	81
n-Butyllithium- TMEDA complex	Hydrocarbon	1	41, 42
t-Butyllithium	n-Hexane	4	82
· sugmentant	Benzene	à	82
	Hydrocarbon	à	80
Phenyllithium	Diethyl ether	2	81

ium compounds are also polymeric in the vapor phase^{45,54,83} and in the solid state.84,85

The paucity of physical measurements on organolithium compounds is largely a result of the difficulty in obtaining pure compounds and the great care which must be exercised in handling these compounds to prevent decomposition. Only recently have heat of formation,86,87 viscosity and density,88 and crystal structure^{84,85,89} measurements been reported.

Instrumental measurements have been used extensively to determine various properties of organolithium compounds. For example, temperature dependence,65,90-92 exchange reactions, 93-97 and complex formation 48, 62 have all been studied by nmr. Bonding inferences have been obtained through nmr⁹⁸ and ir studies, 45, 69, 77, 99-102 as well as through association data.54,103-107 It should be carefully observed that many of the early ir frequencies reported for organolithium com-

- (84) H. Dietrich, Z. Naturforsch., 14B, 739 (1959).
- (85) H. Dietrich, Acta Cryst., 16, 681 (1963).
- (86) P. A. Fowell and C. T. Mortimer, J. Chem. Soc., 3793 (1961).
- (87) Yu. A. Lebedev, E. A, Miroshnichenko, and A. M. Chaikin, Proc. Acad. Sci. USSR, 145, 751 (1962). (88) D. H. Lewis, W. S. Leonhardt, and C. W. Kamienski, Chimia (Aarau), 18, 134 (1964); Chem. Abstr., 61, 1881 (1964).
- (89) E. Weiss and E. A. C. Lucken, J. Organometal. Chem., 2, 197 (1964).
- (90) T. L. Brown and J. A. Ladd, ibid., 2, 373 (1964).
- (91) L. M. Seitz and T. L. Brown, J. Am. Chem. Soc., 88, 2174 (1966).
- (92) R. Waack, M. A. Doran, and P. E. Stevenson, ibid., 88, 2109
- (1966). (93) G. Fraenkel, D. G. Adams, and J. Williams, Tetrahedron Letters, 767 (1963).
- (94) G. E. Hartwell and T. L. Brown, J. Am. Chem. Soc., 88, 4625 (1966).
- (95) C. S. Johnson, Jr., M. A. Weiner, J. S. Waugh, and D. Seyferth, *ibid.*, 83, 1306 (1961).
- (96) L. M. Seitz and T. L. Brown, ibid., 88, 4140 (1966).
- (97) K. C. Williams and T. L. Brown, ibid., 88, 4134 (1966).
- (98) R. Waack, M. A. Doran, E. B. Baker, and G. A. Olah, ibid., 88, 1272 (1966).
- (99) H. P. Fritz and R. Schneider, Chem. Ber., 93, 1171 (1960).
- (100) A. N. Rodionov, D. N. Shigorin, T. V. Talalaeva, and K. A. Kocheshkov, Proc. Acad. Sci. USSR, 143, 175 (1962).
- (101) A. N. Rodionov, V. N. Vasil'eva, T. V. Talalaeva, D. N. Shigorin, E. N. Gur'yanova, and K. A. Kocheshkov, *ibid.*, **125**, 240 (1959).
- (102) R. West and W. H. Glaze, J. Am. Chem. Soc., 83, 3580 (1961).
- (103) N. S. Hush and J. R. Rowlands, Mol. Phys., 6, 201 (1963).
- (104) E. A. C. Lucken, J. Organometal. Chem., 4, 252 (1965).
- (105) V. R. Sandel and H. H. Freedman, J. Am. Chem. Soc., 85, 2328 (1963).
- (106) R. Waack and M. A. Doran, J. Phys. Chem., 68, 1148 (1964).
- (107) R. Waack and M. A. Doran, Chem. Ind. (London), 563 (1965).

pounds are actually caused by alkoxide formation. 45, 102, 108 Other complex physical measurements have also been reported. 58, 109

The thermal stability of organolithium compounds has been the subject of several studies. Most organolithium compounds decompose on heating to lithium hydride and an unsaturated molecule. For example, butyllithium forms lithium hydride, 1-butene, *n*-butane, and resin¹¹⁰ on thermal decomposition. A free-radical mechanism for this process has been excluded.111,112 The products of pyrolysis of several organolithium compounds have also been determined, 51, 52, 113, 114 as well as their stereochemical stability at higher temperatures. 115-117

III. Solvents

The role of the solvent in organometallic reactions is exceedingly complex. A complete discussion of the present state of knowledge regarding solvation is well beyond the scope of this review, but some of the more salient features are included.

Ethers, such as diethyl ether and tetrahydrofuran (THF), and hydrocarbons, such as pentane and hexane, are the most commonly used solvents for organolithium reactions.¹¹⁸ Dioxane and the "glymes" (ethylene glycol ethers) have occasionally been used.¹¹⁹ Acetals are not usually satisfactory and have had only limited use. 120, 121

In general, organometallic reactions proceed more rapidly in ethereal solvents than in hydrocarbons.^{22, 27, 122-126} The accelerated rate effects are attributed to the much greater solvating properties of the ethers through complex formation between the ether and the metal. Such complexes are solvated dimers¹²⁴ of higher reactivity than the original polymeric forms which exist in hydrocarbon solution. In addition, complexing tends to loosen, or ionize, the carbon-lithium bond, leading to over-all lower energy requirements in the transition state.127,128

In hydrocarbon solvents, where organolithium compounds are present in polymeric form, depolymerization to dimers or monomers may be required before appreciable reaction be-

- (108) C. W. Kamienski and D. H. Lewis, J. Org. Chem., 30, 3498 (1965).
- (109) H. Ratajczak and L. Sobczyk, Roczniki Chem., 33, 853 (1959); Chem. Abstr., 54, 4087 (1960).
- (110) K. Ziegler and H. Gellert, Ann., 567, 179 (1950).
- (111) D. Bryce-Smith, J. Chem. Soc., 1712 (1955).
- (112) D. Bryce-Smith, ibid., 1603 (1956).
- (113) R. A. Finnegan and H. W. Kutta, J. Org. Chem., 30, 4138 (1965).
- (114) W. H. Glaze, J. Lin, and E. G. Felton, ibid., 30, 1258 (1965).
- (115) L. Lardicci, L. Lucarini, P. Palagi, and P. Pino, J. Organometal.
- Chem., 4, 341 (1965). (116) R. L. Letsinger, Angew. Chem., 70, 151 (1958); Chem. Abstr., 53,
- 1122 (1959). (117) M. Witanowski and J. D. Roberts, J. Am. Chem. Soc., 88, 737 (1966)
- (118) L. Miginiac-Groizeleau, Bull. Soc. Chim. France, 1449 (1963).
- (119) H. D. Zook and T. J. Russo, J. Am. Chem. Soc., 82, 1258 (1960).
- (120) K. D. Berlin and B. S. Rathore, Tetrahedron Letters, 2547 (1964).
- (121) U. Schoellkopf and H. Kuppers, ibid., 1503 (1964).
- (122) D. Y. Curtin and W. J. Koehl, Jr., J. Am. Chem. Soc., 84, 1967 (1962)
- (123) J. F. Eastham and G. W. Gibson, J. Org. Chem., 28, 280 (1963). (124) J. F. Eastham and G. W. Gibson, J. Am. Chem. Soc., 85, 2171
- (1963). (125) J. E. Mulvaney, Z. G. Gardlund, and S. L. Gardlund, ibid., 85, 3897 (1963).
- (126) R. Waack, M. A. Doran, and P. E. Stevenson, J. Organometal. Chem., 3, 481 (1965).
- (127) R. Waack and M. A. Doran, Chem. Ind. (London), 1290 (1962). (128) L. I. Zakharkin, O. Yu. Okhlobystin, and K. A. Bilevitch, Tetrahedron, 21, 881 (1965).

⁽⁸³⁾ J. Berkowitz, D. A. Bafus, and T. L. Brown, J. Phys. Chem., 65, 1380 (1961).

tween the organometallic compound and the substrate can commence¹²⁹ (see also ref 246).

The major disadvantage to the use of ethers as solvents is that they are readily cleaved by some organometallic reagents; thus reactions conducted in ethereal solvents can be considered as competition reactions between the ether and the reactants for the metalating agent.

Numerous studies have been conducted to evaluate the relative stabilities of organometallic reagents in ethereal solvents.^{69,130-141} Generalizations derived from these studies are summarized in Table IV at the end of this review.

While it is well known that organolithium reagents are not indefinitely stable in ethereal solvents, insufficient work has been reported to establish the exact nature of the decomposition. Several workers have demonstrated that the solvent can be incorporated into the final product, $^{142-144}$ and, in certain cases, specific cleavage reactions by the metalating agent have been used for synthesis. $^{136,145-147}$

Several different workers have demonstrated that the decomposition of diethyl ether (18) by organolithium reagents

$$\begin{array}{ccc} RLi + C_2H_5OC_2H_3 \longrightarrow RH + C_2H_5OLi + CH_2 = CH_2 \\ 17 & 18 & 19 & 20 \end{array}$$

(17) leads to lithium ethoxide (19) and ethylene (20). Ziegler¹⁴¹ showed that the hydrocarbon products were ethylene, butane, hexane, and *n*-octane. Later Gilman¹³⁴ established the presence of the ethoxide by isolating ethanol, after hydrolysis, from the reaction.

Bartlett has also demonstrated that ethylene is one of the decomposition products.¹⁴² When a solution of isopropyllithium (21), prepared in diethyl ether (22) at -60° , was warmed to room temperature and carbonated, the product was diisoamyl ketone (24), which arises *via* reaction of the ethylene (23) formed by the decomposition of the solvent.

Several studies have been made to determine the decomposition products from tetrahydrofuran and substituted tetrahydrofurans with organolithium compounds.¹³³ Pure recrystal-

- (130) R. L. Burwell, Jr., Chem. Rev., 54, 615 (1954).
- (131) D. L. Esmay and C. W. Kamienski, French Patent 1,346,692; Chem. Abstr., 60, 14537 (1963).
- (132) H. Gilman, F. K. Cartledge, and S.-Y. Sim, J. Organometal. Chem., 4, 332 (1965).
- (133) H. Gilman and B. J. Gaj, J. Org. Chem., 22, 1165 (1957).
- (134) H. Gilman, A. H. Haubein, and H. Hartzfeld, *ibid.*, 19, 1034 (1954).
- (135) H. Gilman and G. L. Schwebke, J. Organometal. Chem., 4, 483 (1965).
- (136) H. Gilman and W. J. Trepka, ibid., 3, 174 (1965).
- (137) G. Kobrich, K. Flory, H. R. Merkle, and H. Trapp, Angew. Chem. Intern. Ed. Engl., 4, 706 (1965).
- (138) M. D. Rausch, F. E. Tibbetts, and H. B. Gordon, J. Organomeial. Chem., 5, 493 (1966).
- (139) U. Schoellkopf and M. Rizk, Angew. Chem. Intern. Ed. Engl., 4, 957 (1965).
- (140) D. Seyferth and H. M. Cohen, J. Organometal. Chem., 1, 15 (1963).
- (141) K. Ziegler and H. Gellert, Ann., 567, 185 (1950).
- (142) P. D. Bartlett, S. Friedman, and M. Stiles, J. Am. Chem. Soc., 75, 1771 (1953).
- (143) K. B. Mallion and F. G. Mann, Chem. Ind. (London), 654 (1963).
- (144) L. Spialter and C. W. Harris, J. Org. Chem., 31, 4263 (1966).
- (145) H. Gilman and W. J. Trepka, J. Organometal. Chem., 1, 222 (1964).
- (146) K. B. Mallion and F. G. Mann, Chem. Ind. (London), 1558 (1963).
- (147) H. C. Volger and J. F. Arens, Koninkl. Ned. Akad. Wetenschap. Proc., Ser. B, 60, 43 (1957); Chem. Abstr., 51, 13739 (1957).

lized ethyllithium (25) decomposes tetrahydrofuran (26) to produce ethane (27), ethylene (28), acetaldehyde (29), and 1hexanol (30). These products were explained by the illustrated

mechanism.¹⁸ In a similar reaction, decomposition of 2phenyltetrahydrofuran by propyl- or phenyllithium yields acetophenone and ethylene.¹⁴⁹ It has been suggested that this type of cleavage reaction should be classified as an E2 elimination.

The decomposition of 2-phenyl-1,3-dioxolane (31) gives an 80–94% yield of ethylene (32) and 85% of benzophenone (33) and triphenylcarbinol (34).¹⁵⁰ Since benzoic acid was not isolated, it was proposed that the phenyllithium reacted with the benzoate anion to produce benzophenone and triphenylcarbinol. Only a few studies have been reported on the stereo-

chemistry of ether cleavages by butyllithium. 139, 149, 151

In many cases the choice of either ethereal or hydrocarbon solvent can change the stereochemistry as well as the nature of the product obtained from the reaction. For example, when butadiene is polymerized by butyllithium in ether, the product is predominantly the 1,2-polybutadiene, whereas in hydrocarbon solvent the 1,4 configuration is predominant.^{3, 4, 129, 152}

- (151) R. L. Letsinger and E. Bobko, J. Am. Chem. Soc., 75, 2649 (1953).
- (152) H. Gilman and J. J. Eisch, Sci. Am., 208, 88 (1963).

⁽¹²⁹⁾ J. P. Oliver, J. B. Smart, and M. T. Emerson, J. Am. Chem. Soc., 88, 4101 (1966).

⁽¹⁴⁸⁾ A. Rembaum, S.-P. Siao, and N. Indictor, J. Polymer Sci., 56, S17 (1962).

⁽¹⁴⁹⁾ R. L. Letsinger and D. F. Pollart, J. Am. Chem. Soc., 78, 6079 (1956).
(150) P. S. Wharton, G. A. Hiegel, and S. Ramaswami, J. Org. Chem.

⁽¹⁵⁰⁾ P. S. Wharton, G. A. Hiegel, and S. Ramaswami, J. Org. Chem., 29, 2441 (1964).

Table II	
Degree of Metalation <i>vs.</i> Hydrocarbor	vidity

Compound	pK_{a}^{161}	% yield of acid⁴	Ref
Toluene	37	24	170
Triphenylmethane	35 33	66 87	171 170
Fluorene	25 21	85 03	172
mache	21	35	54

^a After carbonation.

Additionally, there is evidence that metalated compounds have greater stereochemical stability in hydrocarbons than in ethers.¹²² For example, butyllithium reacts with α -chloropropylene oxide (35) in THF at -80° to yield only the *trans*-3-chloroallyl alcohol (36).¹⁵³ However, the yield of trans product decreases as the solvent is changed from THF to

BuLi + Cl-CH₂CH-CH₂
$$\xrightarrow{\text{THF}}$$
 Cl-CH=CH-CH₂OH
35 Cl-CH=CH-CH₂OH

diethyl ether to hexane. At room temperature, both the cis and trans isomers are obtained, even in THF.

The final product can often be changed by using a different solvent. For example, butyllithium metalates phenylacetonitrile in ether on the α carbon, but in hydrocarbon the addition product predominates,¹⁵⁴ In the mixed solvent system THF-hexane, the α carbon is primarily attacked.¹⁵⁵

Since the first demonstration of its use, THF has become increasingly popular as a solvent for organolithium reactions.14 THF has the obvious advantage of a higher boiling point than diethyl ether, and its superior complexing characteristics greatly facilitate many reactions previously thought to be inaccessible. Compounds containing halogens can be metalated readily in THF without concomitant benzyne formation, and in many cases greater yields of a specific product can be obtained.^{156, 157} The major disadvantage is that many organolithium reagents are less stable in THF than in other solvents. This problem has been at least partially circumvented by employing either lower temperatures or the mixed solvent system THF-ether. 157-159

There is no absolute rule for determining the stability of a given organolithium compound in an ethereal solvent. For example, triphenylsilyllithium is more stable in THF,160 while pentachlorophenyllithium is more stable in ether.¹³⁸

There is considerable evidence to show that the presence of one organolithium species in solution enhances the solubility of a second species in that same solution. For example, butyllithium increases the solubility of lithium butoxide in heptane¹⁰⁸ and ethyllithium is more soluble in a solution of tbutyllithium in benzene than in benzene alone.65

IV. Properties of the **Compounds Metalated**

A. HYDROCARBON ACIDITY

The primary prerequisite for metalation is the presence of a potentially acidic hydrogen in the molecule. The term "acidic hydrogen" relates to the natural difference in electronegativity between carbon and hydrogen, resulting in the formation of a partial positive charge on the hydrogen.

The measurement of hydrocarbon acidity has received increasing attention in recent years.¹⁶¹⁻¹⁶⁹ It is of particular interest in metalation chemistry since, in the absence of secondary effects, the degree of relative hydrocarbon acidity usually parallels the degree of metalation. Table II^{54, 170-172} illustrates this parallelism for some strictly aromatic hydrocarbons. The extent of metalation is expressed in terms of the yield of acid obtained after carbonation of the metalated compound. Undoubtedly, the actual extent of metalation is as high, or higher, than the carbonation value.

It follows then that metalation will be enhanced by those factors which tend to increase the acidity of the hydrogens. Thus the presence of electron-withdrawing groups in the molecule, such as nitrile and carboxyl, facilitate metalation. For example, both phenylacetic acid¹⁷³⁻¹⁸² and phenylacetonitrile¹⁵⁵ are readily metalated by butyllithium, whereas ethylbenzene is unaffected.

Advances made in the last several years permit metalation of compounds which previously could not be metalated. Metalation has now been accomplished in such diversified compounds as those which contain ortho-aromatic halogens 183

- (162) A. I. Shatenshtein, Tetrahedron, 18, 95 (1962).
- (163) A. I. Shatenshtein, A. G. Kamrad, I. O. Shapiro, Yu. I. Ranneva, and E. N. Svyagintseva, Proc. Acad. Sci. USSR, 168, 502 (1966).
- (164) A. Streitwieser, Jr., "Molecular Orbital Theory for Organic Chemists," John Wiley and Sons, Inc., New York, N. Y., 1962.
- (165) A. Streitwieser, Jr., J. I. Brauman, J. H. Hammons, and A. H. Pudjaatmaka, J. Am. Chem. Soc., 87, 384 (1965).
- (166) A. Streitwieser, Jr., R. A. Caldwell, R. G. Lawler, and G. R. Ziegler, *ibid.*, 87, 5399 (1965).
- (167) A. Streitwieser, Jr., and R. G. Lawler, ibid., 87, 5388 (1965).
- (168) A. Streitwieser, Jr., W. M. Padgett, II, and I. Schwager, J. Phys. Chem., 68, 2922 (1964).
- (169) A. Streitwieser, Jr., D. E. Van Sickle, and W. C. Langworthy, J. Am. Chem. Soc., 84, 244 (1962).
- (170) H. Gilman and B. J. Gaj, J. Org. Chem., 28, 1725 (1963).
- (171) H. Gilman, A. G. Brook, and L. S. Miller, J. Am. Chem. Soc., 75, 3757 (1953).
- (172) J. W. Morton, Jr., Iowa State Coll. J. Sci., 28, 367 (1954); Chem. Abstr., 49, 8162 (1955).
- (173) D. Ivanov, N. Marekov, and E. Zidarov, Rev. Chim., Acad. Rep. Populaire Roumaine, 7, 985 (1962); Chem. Abstr., 61, 4254 (1964).

(174) D. Ivanov, I. M. Panaiotov, and G. Borisov, Compt. Rend. Acad. Bulgare Sci., 7, 33 (1954); Chem. Abstr., 51, 5020 (1957).

(175) D. Ivanov, I. M. Panaiotov, and G. Borisov, Compt. Rend. Acad. Bulgare Sci., 9, 21 (1956); Chem. Abstr., 52, 1974 (1958).

(176) D. Ivanov, I. M. Panaiotov, and G. Borisov, Compt. Rend. Acad. Bulgare Sci., 9, 23 (1956); Chem. Abstr., 52, 7189 (1958).

- (177) D. Ivanov and G. Vasilev, Compt. Rend. Acad. Bulgare Sci., 7, 29 (1954); Chem. Abstr., 51, 5020 (1957).
- (178) D. Ivanov and G. Vasilev, Compt. Rend. Acad. Bulgare Sci., 9, 29 (1956); Chem. Abstr., 52, 1974 (1958).
- (179) D. Ivanov and G. Vasilev, Compt. Rend. Acad. Bulgare Sci., 9, 39 (1956); Chem. Abstr., 52, 7189 (1958).

(181) D. Ivanov and G. Vasilev, Compt. Rend. Acad. Bulgare Sci., 10, 121 (1957); Chem. Abstr., 52, 5352 (1958).

(182) D. Ivanov, G. Vasilev, I. M. Panaiotov, G. Borisov, and N. Marekov, Godishnik Sofiiskiya Univ. Fiz.-Mat. Fak., 52, 1 (1957/58); Chem. Abstr., 55, 1521 (1961).

(183) H. Gilman and T. S. Soddy, J. Org. Chem., 22, 1715 (1957).

⁽¹⁵³⁾ D. F. Hoeg, J. E. Forrette, and D. I. Lusk, Tetrahedron Letters, 2059 (1964).

⁽¹⁵⁴⁾ W. I. O'Sullivan, F. W. Swamer, W. J. Humphlett, and C. R. Hauser, J. Org. Chem., 26, 2306 (1961). (155) E. M. Kaiser and C. R. Hauser, J. Am. Chem. Soc., 88, 2348

^{(1966).} (156) H. Gilman and R. D. Gorsich, J. Org. Chem., 22, 687 (1957).

⁽¹⁵⁷⁾ H. Gilman and S. Gray, ibid., 23, 1476 (1958).

⁽¹⁵⁸⁾ H. Gilman and W. J. Trepka, ibid., 26, 5202 (1961).

⁽¹⁵⁹⁾ D. W. Mayo, P. D. Shaw, and M. D. Rausch, Chem. Ind. (London), 1388 (1957). (160) H. Gilman, W. J. Trepka, and D. Wittenberg, J. Am. Chem. Soc., 84, 383 (1962).

⁽¹⁶¹⁾ D. J. Cram, "Fundamentals of Carbanion Chemistry," Academic Press, New York, N. Y., 1965.

⁽¹⁸⁰⁾ D. Ivanov and G. Vasilev, Compt. Rend. Acad. Bulgare Sci., 10, 53 (1957); Chem. Abstr., 52, 5352 (1958).

and benzylic halogens. 137, 153, 184-203 The details of these reactions are considered in their respective sections.

B. DERIVATIVES

After metalation, the molecule is usually further treated with an additional reagent, either to synthesize a desired compound or to determine the position, or extent, of metalation. The two most commonly used agents for preparing derivatives are carbon dioxide and trisubstituted halosilanes. The lower molecular weight halosilanes, such as trimethylchlorosilane, are frequently preferred since the products can be analyzed readily by gas phase chromatography. In this regard, it cannot be over-emphasized that when more than one pathway is available to a molecule, or when more than one organolithium derivative is present in the solution, internal competition reactions can and do occur. Thus the derivatives may not reflect accurately the precise course of the reaction.

In general, organolithium compounds react similarly to other organometallic reagents in their reactions with derivatizing agents. Very few "abnormal" reactions are reported, 204, 205 and most of these result from secondary reactions. Thus carbonation of an organolithium compound frequently leads to a mixture of acids and ketones via further reaction of the lithium salt of the formed carboxylate5, 206

The lithium atom in a metalated compound can be replaced by treating the molecule with suitable reagents to obtain amides or ketones, 207 sulfinates, 208 carboxylic acids,5 and alcohols.²⁰⁹⁻²¹¹ These reactions are summarized in Table VI.

- (184) D. F. Hoeg and D. I. Lusk, J. Am. Chem. Soc., 86, 928 (1964).
- (185) D. F. Hoeg and D. I. Lusk, J. Organometal. Chem., 5, 1 (1966).
- (186) D. F. Hoeg, D. I. Lusk, and A. L. Crumbliss, J. Am. Chem. Soc., 87, 4147 (1965).
- (187) G. Köbrich, Angew. Chem. Intern. Ed. Engl., 6, 41 (1967).
- (188) G. Köbrich, W. E. Breckoff, H. Heinemann, and A. Akhtar, J. Organometal. Chem., 3, 492 (1965).
- 189) G. Köbrich and P. Buck, Angew. Chem. Intern. Ed. Engl., 5, 1044 (1966).
- (190) G. Köbrich and W. Drischel, ibid., 4, 74 (1965).
- (191) G. Köbrich and W. Drischel, Tetrahedron, 22, 2621 (1966).
- (192) G. Köbrich and K. Flory, Tetrahedron Letters, 1137 (1964).
- (193) G. Köbrich and K. Flory, Chem. Ber., 99, 1773 (1966).
- (194) G. Köbrich, K. Flory, and W. Drischel, Angew. Chem. Intern. Ed., Engl., 3, 513 (1964).
- (195) G. Köbrich, K. Flory, and R. H. Fischer, Chem. Ber., 99, 1793 (1966).
- (196) G. Köbrich, H. Frolich, and W. Drischel, J. Organometal. Chem., 6, 194 (1966).
- (197) G. Köbrich and H. Heinemann, Angew. Chem. Intern. Ed. Engl., 4, 594 (1965).
- (198) G. Köbrich and H. R. Merkle, Chem. Ber., 99, 1782 (1966).
- (199) G. Köbrich and H. Trapp, Z. Naturforsch., 18b, 1125 (1963).
- (200) G. Köbrich and H. Trapp, Chem. Ber., 99, 670 (1966); Chem. Abstr., 64, 12707 (1966).
- (201) G. Köbrich and H. Trapp, Chem. Ber., 99, 680 (1966).
- (202) G. Köbrich, H. Trapp, K. Flory, and W. Drischel, *ibid.*, 99, 689 (1966); Chem. Abstr., 64, 12709 (1966).
- (203) G. Köbrich, H. Trapp, and I. Hornke, Tetrahedron Letters, 1131 (1964).
- (204) A. E. Bey and D. R. Weyenberg, J. Org. Chem., 30, 2436 (1965). (205) A. G. Brook, H. Gilman, and L. S. Miller, J. Am. Chem. Soc., 75, 4759 (1953).
- (206) G. Vavon and J. Thiec, Compt. Rend., 233, 1290 (1951).
- (207) A. Cattaneo, G. Gelmi, and H. Zevio, Farmaco (Pavia), Ed. Sci., 16, 741 (1961); Chem. Abstr., 57, 5879 (1962).
- (208) W. E. Truce and E. Wellisch, J. Am. Chem. Soc., 74, 5177 (1952). (209) A. Schaap, L. Brandsma, and J. F. Arens, Rec. Trav. Chim., 84, 1200 (1965).
- (210) S. Searles, J. Am. Chem. Soc., 73, 124 (1951).
- (211) G. Van Zyl, R. J. Langenberg, H. H. Tan, and R. N. Schut, *ibid.*, 78, 1955 (1956).

Sevferth²¹²⁻²¹⁴ has demonstrated clearly that both carbonation and silvlation of propenvllithium compounds proceed with retention of configuration. Metalation of cis-propenyltrimethyltin (37) by butyllithium in ether followed by silylation produced the cis-trimethylsilylpropene (39). The final product could arise either through two consecutive inversions, from 37 to 38 and 38 to 39, or through retention of con-

figuration at each step. Nmr studies of all three compounds clearly demonstrated that there was retention of configuration with each transformation. It has been assumed for many years, based on indirect evidence, that these reactions proceed with retention: however, this work constitutes the first direct proof based on instrumental measurements.

C. COLOR OF METALATED COMPOUNDS

Although many organometallic compounds are highly colored in solution, there is no unequivocal correlation between the observed color and the nature of the compounds.215,216 In fact, no rule of thumb has yet been suggested to predict the color which would result from changing either the metal ion or the organic moiety in any given compound. The visible color of a specific organolithium compound is dependent upon, among other things, the solvent, 92, 127, 217 temperature, concentration, mode of preparation, and probably the extent of aggregation. The colors of some organolithium compounds, as reported in the literature, have been summarized in Table V. It is interesting to note the absence of any blue organolithium compounds, even though lithium ketyls are blue. In the case of benzyldimethylamine, the colors for lithium, sodium, and potassium counterions are recorded.

D. MECHANISM AND KINETICS

The present trend in organometallic research is toward structural, mechanistic, and kinetic studies. Several general reviews on organometallic reaction mechanisms have been published, 10, 11, 218, 219 and one specifically on organolithium mechanisms.7 However, insufficient knowledge has been obtained to formulate to an exact degree the specific pathways utilized by organolithium reagents.

Any realistic discussion of organolithium mechanisms must take cognizance of at least the following several points.

1. Organolithium compounds exhibit varying degrees of polymerization dependent upon the solvent, concentration, and temperature.

(213) D. Seyferth and L. G. Vaughan, J. Organometal. Chem., 1, 201 (1963).

(214) D. Seyferth and L. G. Vaughan, ibid., 5, 580 (1966).

(216) R. Waack and M. A. Doran, J. Am. Chem. Soc., 85, 1651 (1963).

- (218) C. K. Ingold, Helv. Chim. Acta, 47, 1191 (1964).
- (219) G. Wittig, Bull. Soc. Chim. France, 1352 (1963).

⁽²¹²⁾ D. Seyferth and L. G. Vaughan, ibid., 86, 883 (1964).

⁽²¹⁵⁾ M. Schlosser, Angew. Chem. Intern. Ed. Engl., 3, 287 (1964).

⁽²¹⁷⁾ R. Waack and M. A. Doran, J. Phys. Chem., 67, 148 (1963).

3. In a metalation reaction, a new organolithium species is generated in situ, which makes the kinetics very complex.

4. Organolithium compounds are easily contaminated by oxygen etc., to give undetected impurities which are often erroneously included as normal parts of the products.

The initial step in a metalation reaction is the coordination between the metal and the atom bearing the most acidic hydrogen.^{5, 220, 221} This is followed by the rate-determining step which is the breaking of the carbon-hydrogen bond. 163, 222-225 Evidence for this is found in the many hydrogen-deuterium exchange studies, all of which show the expected isotope effect. 162, 163, 226-229 This initial coordination step has been viewed as an acid-base exchange by some authors, 5, 162, 163, 221, 230, 231 and as an electrophilic attack on the cation of the organoalkali compound on a carbon atom with increased electron density.²³² The former is presently the more accepted theory.

While the exact nature of the initial coordination step has not been clearly defined, a four-center type of coordination appears to fit the data, as illustrated with butyllithium, 218, 233

$$R - H + BuLi \longrightarrow \begin{bmatrix} R - H \\ I \\ Li - Bu \end{bmatrix} \xrightarrow{R - - H \\ Li - Bu \end{bmatrix} \longrightarrow$$

$$RLi + BuH$$

While electron-transfer reactions have been suggested for some metalation reactions, 56, 125, 234, 235 this has not been established as a generalization. It has been established, however, that olefins can equilibrate in the presence of their radical ion, 236 Carbenes have been proposed as intermediates in some organolithium reactions.²³⁷⁻²⁴¹

The factors governing orientation in the metalation of ar-

- (220) A. A. Morton, J. Am. Chem. Soc., 69, 969 (1947).
- (221) J. D. Roberts and D. Y. Curtin, ibid., 68, 1658 (1946).
- (222) R. A. Barnes and L. J. Nehmsmann, J. Org. Chem., 27, 1939 (1962).
- (223) R. A. Benkeser, A. E. Trevillyan, and J. Hooz, J. Am. Chem. Soc., 84, 4971 (1962).
- (224) D. Bryce-Smith, J. Chem. Soc., 5983 (1963).
- (225) B. Ostman, Arkiv Kemi, 22, 551 (1964).
- (226) D. Bryce-Smith, V. Gold, and D. P. N. Satchell, J. Chem. Soc., 2743 (1954).
- (227) S. Gronowitz and K. Halvarson, Arkiv Kemi, 8, 343 (1955); Chem. Abstr., 49, 10921 (1955).
- (228) D. A. Shirley and K. R. Barton, Tetrahedron, 22, 515 (1966).
- (229) K. B. Wiberg, J. Am. Chem. Soc., 77, 5987 (1955).
- (230) D. Bryce-Smith, J. Chem. Soc., 1079 (1954).
- (231) S. Gronowitz, Arkio Kemi, 7, 361 (1954); Chem. Abstr., 49, 13216 (1955).
- (232) A. A. Morton and C. E. Claff, Jr., J. Org. Chem., 21, 736 (1956).
- (233) A. P. Batalov, G. A. Rostokin, and I. A. Korshunov, J. Gen-Chem. USSR, 35, 2135 (1966).
- (234) G. A. Russell, E. G. Janzen, and E. T. Strom, J. Am. Chem. Soc., 86, 1807 (1964).
- (235) R. Waack and M. A. Doran, J. Organometal. Chem., 3, 92 (1965).
- (236) M. A. Doran and R. Waack, ibid., 3, 94 (1965).
- (237) G. L. Closs and L. E. Closs, J. Am. Chem. Soc., 81, 4996 (1959).
- (238) H. Gilman and D. Aoki, J. Organometal. Chem., 2, 293 (1964).
- (239) M. J. Goldstein and W. R. Dolbier, Jr., J. Am. Chem. Soc., 87, 2293 (1965).
- (240) W. T. Miller, Jr., and D. M. Whalen, ibid., 86, 2089 (1964).
- (241) O. M. Nefedov, N. N. Novitskaya, and A. D. Petrov, Pro Acad. Sci. USSR, 158, 905 (1964); Chem. Abstr., 61, 14579 (1964). Proc.

omatic systems have been investigated. 220-224, 227, 230, 232, 242-245 There are two general theories regarding the orientation. Bryce-Smith²³⁰ feels that the position of metalation by organosodium compounds is influenced primarily by the thermodynamic stability of the carbon-hydrogen bond undergoing scission, while Benkeser,²²³ using both organosodium and -potassium compounds, proposes that the initial attack is kinetically controlled but that the final position of metalation is a result of thermodynamic stabilities. These same conclusions have not yet been extrapolated to organolithium systems. Waack²⁴⁶ has separated organolithium reagents into three broad areas on the basis of their metalating ability and has concluded that the most reactive group (benzylic and allylic lithiums) is probably the most thermodynamically unstable. so that no real correlation exists between thermodynamic stability and the rate of metalation. It has also been suggested¹³ that the over-all nucleophilicity of the metalating species is the rate-controlling factor. These views support the theory that the basic mechanism involved is the nucleophilic attack on hydrogen by the metal.²²¹

Kinetic studies of metalations by organolithium reagents in nonpolymerizing systems have received relatively less attention primarily because of the great difficulty in handling the organometallic compounds. However, it has been demonstrated that the rate of reaction is dependent upon the solvent. 27, 68, 123 Many early studies on kinetics did not consider the fact that organolithiums are polymeric and not monomeric. The rate of reaction between ethyllithium and anisole has been studied and found to be second order.²⁴⁷ as has the rate of exchange between phenyllithium and deuterated phenyl bromide233 and deuterated benzene.55

Most of the kinetic studies have been carried out on systems which are prototypes for polymerization reactions. The addition of organolithium compounds to 1,1-diphenylethylene and fluorene has been studied in great detail.7, 127, 248-257 The reaction order for the organolithium reagent was found to be variable dependent upon the structure of the reagent.

Organolithium reagent	Order	Ref
Butyllithium	1/6	250
t-Butyllithium	2/4	248
Ethyllithium	1/9	252
Vinyllithium	1/3	255

The theory has been advanced that in hydrocarbon solution the relative rate of metalation is dependent upon dissociation

- (242) R. A. Barnes and W. M. Bush, J. Am. Chem. Soc., 81, 4705 (1959).
- (243) C. D. Broaddus, ibid., 88, 4174 (1966).
- (244) C. D. Broaddus, T. J. Logan, and T. J. Flautt, J. Org. Chem., 28, 1174 (1963).
- (245) C. Eaborn and D. R. M. Walton, J. Chem. Soc., 5626 (1963).
- (246) R. Waack and P. West, J. Am. Chem. Soc., 86, 4494 (1964).
- (247) T. F. Fagley and E. Klein, ibid., 77, 786 (1955).
- (248) R. A. H. Casling, A. G. Evans, and N. H. Rees, J. Chem. Soc., B, 519 (1966).
- (249) A. G. Evans and D. B. George, Proc. Chem. Soc., 144 (1960).
- (250) A. G. Evans and D. B. George, J. Chem. Soc., 4653 (1961).
- (251) A. G. Evans and D. B. George, ibid., 141 (1962).
- (252) A. G. Evans, C. R. Gore, and N. H. Rees, ibid., 5110 (1965).
- (253) A. G. Evans and N. H. Rees, ibid., 6039 (1963).
- (254) H. Gilman and D. Aoki, Chem. Ind. (London), 1619 (1961).
- (255) R. Waack and P. E. Stevenson, J. Am. Chem. Soc., 87, 1183
- (1965).
- (256) R. Waack, P. West, and M. A. Doran, Chem. Ind. (London), 1035 (1966).
- (257) T. C. Wu, D. Wittenberg, and H. Gilman, J. Org. Chem., 25, 596 (1960).

of the polymeric form to the monomeric form;^{248,250} however, this has been disputed by others.94, 258 It must be remembered, however, that a new organolithium compound is generated in situ in all of these reactions, so the kinetic calculations cannot be based solely upon the initial reacting species. The role of the solvent in kinetic studies has been discussed,²⁵⁹ and several reactions have been considered in terms of ion pairs.97, 260, 261

V. Types of Compounds Metalated

A. METALATION OF HYDROCARBONS

Those few hydrocarbons which can be metalated by uncomplexed organolithium compounds contain an activated, acidic hydrogen in the molecule.

In general, unactivated saturated hydrocarbons are sufficiently inert to metalation that they can be used as solvents for the reaction. Olefins frequently add one molecule of the organolithium compound to produce the equivalent of a metalated saturated chain.^{50, 142, 262, 263} For example, phenyllithium adds to vinyltriphenylsilane (40) to form the metalated intermediate (41).²⁶² Butyllithium adds in a 1,4 manner to

$$\begin{array}{cccc} Ph_{3}SiCH=CH_{2} &+ & PhLi &\longrightarrow & Ph_{3}Si-CH-CH_{2} \\ \textbf{40} & & & & & | & | \\ Li & Ph \\ \textbf{41} \end{array}$$

molecules such as butadiene and isoprene^{3,4} to form the equivalent of allylically metalated compounds.

Recently some workers have shown that terminal acetylenic compounds can be polymetalated. West²⁶⁴ found that all four hydrogens of propyne can be replaced by lithium, while Eberly²⁶⁵ has shown that butyne (42) is only dimetalated (43).

$$CH_{3}CH_{3}C = CH$$

$$42$$

$$CH_{3}CH_{2}C = CLi$$

$$H_{3}CH_{2}C = CCOOH$$

$$CH_{3}CH_{2}C = CCOOH$$

$$CH_{3}CHC = CLi$$

$$H_{3}CHC = CLi$$

Addition of 3 equiv of butyllithium to butyne produces only a butynyldilithium-butyllithium adduct (44), and carbonation gives no evidence of a trimetalated compound.

⁽²⁵⁹⁾ C. G. Screttas and J. F. Eastham, J. Am. Chem. Soc., 88, 5668 (1966).

- (260) T. E. Hogen-Esch and J. Smid, ibid., 88, 307 (1966).
- (261) T. E. Hogen-Esch and J. Smid, ibid., 88, 318 (1966).

- (263) K. Ziegler and H. Gellert, Ann., 567, 195 (1950).
- (264) R. West, P. A. Carney, and I. C. Mineo, J. Am. Chem. Soc., 87, 3788 (1965).
- (265) K. C. Eberly and H. E. Adams, J. Organometal. Chem., 3, 165 (1965).

In certain cyclic aliphatic systems, an acidic hydrogen can be created by the rigid steric requirements of the system. For example, tricyclo[4.1.0.0.^{2,7}]heptane (45) can be metalated.²⁶⁶ Norbornadiene, after metalation and carbonation, gives endo-2-norcamphanecarboxylic acid.²⁶⁷

Internal acetylenes react with organolithium compounds to form products which arise either from addition or metalation depending upon the solvent, temperature, and type of metalating agent. For example, butyllithium (or ethyllithium) and diphenylacetylene do not react in pentane, whereas in ether, both addition and metalation occur to produce

(46).^{125,268} Under similar reaction conditions, *t*-butyllithium and diphenylacetylene in ligroin give a 30% yield of 1,2,3,4 tetraphenyl-1,3-butadiene.

Benzene is only slightly metalated by butyllithium in ether.^{5,55} However, in the presence of potassium and an organolithium compound, benzene is metalated and produces, after carbonation, benzoic acid in yields up to 90%. The metalation probably proceeds through an organopotassium

$$RLi + K \longrightarrow RK + Li$$
$$RK + PhH \longrightarrow PhK \longrightarrow PhCOOH$$

intermediate, instead of through the lithium.²¹

Benzene can be readily metalated by butyllithium-TMEDA complexes (see data in Table III) in at least 60% yield.^{41, 42} Dilithiobenzene has also been prepared.²⁶⁹

Toluene is also very difficult to metalate by the usual organolithium reagents.¹⁷⁰ However, butyllithium-TMEDA metalates toluene to give benzyllithium-TMEDA quantitatively.^{41, 42} When the toluene molecule is further activated by a substituent, such as in duryl o-tolyl ketone, the side-chain hydrogens are sufficiently activated to be more readily metalated. In this case, metalation takes precedence over an addition to the carbonyl group. This unexpected route is probably attributable to steric hindrance by the bulky groups surrounding the carbonyl function. 270

When toluene is α -substituted by phenyl groups, the hydrogens are sufficiently activated to give respectable yields of metalated products. Diphenylmethane gives 40-66% diphenylacetic acid, 171, 271, 272 and triphenylmethane, which is

⁽²⁶²⁾ L. F. Cason and H. G. Brooks, J. Org. Chem., 19, 1278 (1954).

⁽²⁶⁶⁾ G. L. Closs and L. E. Closs, J. Am. Chem. Soc., 85, 2022 (1963).

⁽²⁶⁷⁾ G. Wittig and E. Hahn, Angew. Chem., 72, 781 (1960).

⁽²⁶⁸⁾ J. E. Mulvaney, Z. G. Gardlund, S. L. Gardlund, and D. J. Newton, J. Am. Chem. Soc., 88, 476 (1966).

⁽²⁶⁹⁾ G. Wittig and F. Bickelhaupt, Angew. Chem., 69, 93 (1957).

⁽²⁷⁰⁾ R. C. Fuson, W. C. Hammann, and P. R. Jones, J. Am. Chem. Soc., 79, 928 (1957).

⁽²⁷¹⁾ H. Gilman, O. L. Marrs, W. J. Trepka, and J. W. Diehl, J. Org. Chem., 27, 1260 (1962).

⁽²⁷²⁾ H. Normant and B. Angelo, Bull. Soc. Chim. France, 1988 (1961).

even more activated, gives higher yields, about 85–90 %, of triphenylacetic acid.¹⁷⁰

Styrene is not metalated by organolithium compounds to form styryllithium;^{204, 273} instead the organolithium adds across the vinyl group. Usually this is followed immediately by addition of the adduct to more styrene in a polymerization reaction which leads to polystyrene. However, when this addition is carried out with a great excess of butyllithium, the product of the initial addition can be isolated. In the example illus-

PhCH=CH₂ + BuLi
$$\xrightarrow{\text{ether}}_{\substack{\text{room} \\ \text{temp}}}$$
 COOH
PhCH-CH₂C₄H₉ $\xrightarrow{1. \text{ CO}_1}_{2. \text{ H}_3\text{O}^+}$ Ph-CH-CH₂C₄H₉

trated above, the acid **47** has been identified as 2-phenylheptanoic acid, ²⁷³ thus establishing the direction of the addition across the double bond.

An interesting series of competition reactions^{204, 274} has shown the variable affinity of organolithium compounds for styrene vs. chlorotrimethylsilane. Primary organolithiums (butyl-, isobutyl-, vinyl-, and phenyllithium) react preferentially with chlorotrimethylsilane, whereas secondary and tertiary organolithiums (*sec*-butyl- and *t*-butyllithium) react preferentially with styrene. The benzylic intermediate, formed from styrene and a secondary or tertiary organolithium, also reacts exclusively with chlorotrimethylsilane instead of with more styrene. The results of these competitive reactions are in accord with those reported by Waack and Doran.²⁷⁶

Indene (48) is metalated by butyllithium at room temperature for several hours to produce a single product after carbonation. This is considered to be indene-1- (or -3-) carboxylic acid.^{276,277} Melera²⁷⁸ studied the methyl ester of the product acid by nmr and showed unequivocally that the acid formed under these conditions is **50**, indene-3-carboxylic acid.

He explained this product on the basis of isomerization of **49** to **50**, under the basic conditions of the metalation reaction. Further evidence for this assumption was provided by Meth-Cohn and Gronowitz,²⁷⁹ who showed that indene, when metalated by butyllithium at -70° for 15–20 min followed by carbonation and rapid acidification, produced a high yield of indene-1-carboxylic acid (**49**). They showed further that tautomerism to **50** is rapid and is catalyzed by base.

Fluorene, which contains two acidic hydrogens, is readily

- (277) R. Meier, Chem. Ber., 86, 1483 (1953).
- (278) A. Melera, M. Claesen, and H. Vanderhaeghe, J. Org. Chem., 29, 3705 (1964).
- (279) O. Meth-Cohn and S. Gronowitz, Chem. Commun., 81 (1966).

metalated by organolithium compounds in the 9 position. It has also been shown,²⁷⁴ in a series of competition reactions, that butyllithium reacts more rapidly with 9-trimethylsilylfluorene than with unsubstituted fluorene, and that butyllithium reacts more rapidly with either of the above compounds than with trimethylchlorosilane. These reactions furnish indirect evidence that the 9 hydrogen in 9 trimethylsilylfluorene is more acidic than in unsubstituted fluorene. These reactions suggest also that experimenters should use great care in assigning structures of organolithium compounds based only on derivative formation, since the relative rates of the competitive reactions may not necessarily indicate the nature of the compounds present.

Metalation occurs as expected at the most acidic hydrogen in polynuclear hydrocarbons. For example, both pyrene^{280–282} and perylene²⁸³ have been metalated.

B. METALATION OF OXYGEN COMPOUNDS

Competitive metalation studies have established that the ethereal oxygen in dibenzofuran activates the molecule more strongly toward metalation than does the sulfur in dibenzothiophene or the nitrogen in 9-ethylcarbazole.⁵ These metalation studies also established that the lithium atom enters at a position adjacent to the oxygen, in other words, *ortho* to oxygen in an aromatic system or α in a saturated system. Phenoxazine (**51**) is metalated in the 4 position, *ortho* to oxygen

rather than nitrogen,²⁸⁴ illustrating both the stronger effect of oxygen over nitrogen and the *ortho* position of metalation.

Furan is readily metalated in the α position and the product gives the typical reactions of an organolithium compound.²⁸⁵ However, competitive reactions between thiophene and furan for an insufficient quantity of butyllithium show that thiophene is metalated almost exclusively.286 These unexpected results seem to be in direct contrast to the above dibenzo systems. Shatenshtein¹⁶³ has studied the relative hydrogen-deuterium exchange in the α and β positions of both thiophene and furan and has shown that although the inductive effect of oxygen is greater than sulfur, thiophene metalates faster than furan because of the stabilization of sulfur in the transition state as a consequence of d-orbital participation. These results are in accord with those of Gol'dfarb,286 who showed that in a similar competitive reaction, 96% of the metalated product was thienyllithium, and only 4% was furyllithium.

According to Shatenshtein, 162, 163 the β hydrogens in both

- (281) H. W. Brown and R. C. Jones, J. Chem. Phys., 36, 2809 (1962).
- (282) H. W. Brown and R. C. Jones, ibid., 37, 1571 (1962).
- (283) H. E. Zieger and J. E. Rosenkranz, J. Org. Chem., 29, 2469 (1964).
- (284) H. Gilman and L. O. Moore, J. Am. Chem. Soc., 80, 2195 (1958).
- (285) V. Ramanathan and R. Levine, J. Org. Chem., 27, 1216 (1962).
- (286) Ya. L. Gol'dfarb and Ya. L. Danyushevskii, J. Gen. Chem. USSR, 31, 3410 (1961).

⁽²⁷³⁾ R. C. P. Cubbon and D. Margerison, Proc. Chem. Soc., 146 (1960).

⁽²⁷⁴⁾ A. E. Bey and D. R. Weyenberg, J. Org. Chem., 31, 2036 (1966).
(275) R. Waack and M. A. Doran, Polymer, 2, 365 (1961).

⁽²⁷⁵⁾ N. H. Cromwell and D. B. Capps, J. Am. Chem. Soc., 74, 4448 (1952).

⁽²⁸⁰⁾ A. Berg, Acta Chem. Scand., 10, 1362 (1956).

thiopene (82) and furan (81) are activated equally toward metalation. Similar results are not available for the dibenzo systems, but by extrapolation, it can be assumed that the *ortho* hydrogens are similar in activity to the β hydrogens of furan and thiophene, and the inductive effect of oxygen then becomes predominant.

Dibenzofuran has been metalated by butyllithium in ether in relatively low yields. However, by the use of the mixed solvent system THF-ether, dibenzofuran is metalated in much higher yield (83-86% of acid after carbonation) even at low temperature (-60°) .^{156, 157, 287} The position of metalation is, as expected, *ortho* to the oxygen. Dibenzofuran (52) is cleaved

by lithium metal in ether under more drastic conditions to give, after hydrolysis, *o*-hydroxybiphenyl (53).²³⁸

The metalation of aliphatic ethers, such as diethyl ether, has been discussed in the section covering solvents and ether cleavages. It must be remembered that when metalations are conducted in ethereal solvents, reaction of the cleavage products can lead to anomalous results.

Organolithium compounds react normally with small ring ethers to form alcohols. In this respect it is an interesting reflection on relative ring strain to note that while reactions with ethylene and propylene oxide²¹⁰ lead to the alcohols, butylene oxide (THF) is less reactive and can be used as a solvent for metalation reactions.

Metalation of diphenyl ether (54) can be controlled to give either mono- or disubstituted products.^{158, 289-292} The reactions

- (287) H. Gilman, ref 15, p 1.
- (288) H. Gilman and D. L. Esmay, J. Am. Chem. Soc., 75, 2947 (1953)
- (289) H. Gilman and D. Miles, J. Org. Chem., 23, 1363 (1958).
- (290) H. Gilman and W. J. Trepka, ibid., 27, 1418 (1962).
- (291) K. Oita and H. Gilman, ibid., 21, 1009 (1956).
- (292) K. Oita and H. Gilman, J. Am. Chem. Soc., 79, 339 (1957).

703

illustrated above have been used to make a variety of interesting compounds such as **55** and **56** noted for their high thermal stability.

Conflicting results are reported regarding the metalation of methoxynaphthalenes. Gilman first stated that 1-methoxynaphthalene, after metalation and carbonation, gave the expected product, 2-methoxynaphthoic acid in 25% yield.⁵ In a later study, Barnes²²² reported that 1-methoxynaphthalene metalates first at the 8 position, and, if the reaction proceeds long enough, the lithium rearranges to the 2 position. Using MO calculations. Barnes showed that the 8 hydrogen is the most acidic, a conclusion also confirmed by nmr. He suggested that there is sufficient steric hindrance between the 1 and 8 positions so that the 1 and 2 positions are the more thermodynamically stable. Thus, with longer reaction times, more of the 2 isomer is formed. Shirley²⁹³ later reexamined the problem. By metalating 1-methoxynaphthalene-8-d and then analyzing for the deuterium content of the evolved butane, he was able to show that although a small amount of metalation does occur at the 8 position, the primary position of attack is at the 2 position, ortho to the methoxy group. He further demonstrated that the isomer distribution is affected by the amount and kind of salt present, i.e., lithium bromide contained in the metalating reagent.

It would seem appropriate to repeat the above work, since all of the results were based on very low yields of acids.^{5, 222, 293} Higher yields, being more representative of the reaction, would do much to clarify the issues. The metalation of triphenylamine is the only other example in the literature where the metal does not enter *ortho* to a heteroatom, and this has been ascribed to steric hindrance (see the Nitrogen section).

Mixed aliphatic-aromatic ethers are readily metalated by organolithium reagents, usually in the *ortho*, or α , position similar to the oxygen heterocycles.⁵ Metalation of 4-methyl-anisole gives 5-methyl-2-methoxybenzoic acid after carbon-

ation,²⁹⁴ and resorcinol dimethyl ether (**57**) is metalated in the 2 position, *ortho* to both methoxy groups¹⁷² to yield **58**.

When one of the positions *ortho* to the methoxy group is occupied, an intermolecular competition occurs in the molecule, and it is not always clear which position will be preferentially metalated. For example, *o*-methylanisole (**59**) after

metalation and subsequent carbonation is reported to give equal amounts (albeit in very small yields) of both the sidechain (60) and ring (61) metalated products while *o*-ethylanisole gives only 2-methoxy-3-ethylbenzoic acid. ²⁹⁴ Kun and Cassidy studied the more complicated structure 1,4-dimeth-

⁽²⁹³⁾ B. M. Graybill and D. A. Shirley, J. Org. Chem., 31, 1221 (1966);

⁽²⁹⁴⁾ R. L. Letsinger and A. W. Schnizer, ibid., 16, 869 (1951).

oxy-2, 3,5-trimethylbenzene (62) and found that after metalation and derivatization with acetaldehyde, the major product was the alcohol 63; the only minor product isolated was 1methoxy-4-hydroxy-2,3,5-trimethylbenzene (64). Clearly, in this case, attack occurred predominantly on the benzylic hydrogen.²⁹⁵ However, when 2,2-dimethylchroman (65) is metal-

ated by butyllithium, only the ortho ring position is involved. 296

The above results indicate that for the anisoles, the order of preference for attack by butyllithium on hydrogen is benzylic > aromatic > aliphatic. In this respect, it is interesting to note that while aliphatic ethers are readily metalated (and cleaved) by organolithium compounds, anisole (methyl phenyl ether) is metalated only on the ring, and cleavage of the ether function does not seem to occur. However, in highly substituted compounds, such as 64, some cleavage of the ether function does occur.

The strong ortho-directing effect of oxygen is further shown in the metalation of 2-ethoxyquinoline (66), 297 where only the position ortho to the oxygen is metalated, and the position peri to nitrogen is unaffected. The product 67 forms by way of

ortho metalation, and 68 forms through the addition of butyllithium to the azomethine linkage with subsequent elimination of ethoxide.

The metalation of triphenylmethyl ether 69 gives 9-phenylfluorene (70) after hydrolysis. Presumably this arises through the metalation of an ortho ring hydrogen, followed by attack at the central carbon, elimination of methoxide, and ring closure.²⁹⁸ Even in dibenzhydryl ether, where both ring and doubly

activated benzylic hydrogens are available, metalation is reported to occur only on the ortho ring position.²⁹⁹

Gilman and Santucci³⁰⁰ studied the metalation of substituted benzenes containing both hydroxy and alkoxy functions. Carbonation of metalated o-methoxyphenol (71) gave

equal quantities of 72 and 73. The same over-all yield of acidic products was obtained from *m*-methoxyphenol (74) but the major attack was ortho to the methoxy group. These results

indicate that metalation is more strongly enhanced by methoxyl groups than hydroxyl groups.

Labile ethers are frequently used as temporary blocking agents to avoid the presence of free interfering groups during a reaction. The dihydropyranyl ether of hydroquinone can be metalated to give, after carbonation and hydrolysis, 2,5dihydroxybenzoic acid.³⁰¹ Also, 1,3-dioxolanes can serve as effective blocking groups for carbonyl functions during metalations. 302

When the pyranyl ether of *m*-methoxyphenol (75) is metalated and carbonated, the only acid isolated was 76. The yield

was about four times greater than for the free m-methoxyphenol (74), indicating the deactivating effect of the free hydroxyl group.³⁰⁰ This latter effect may be a reflection of the

⁽²⁹⁵⁾ K. A. Kun and H. G. Cassidy, J. Org. Chem., 27, 841 (1962). (296) M. Hallet and R. Huls, Bull. Soc. Chim. Belges, 61, 33 (1952); Chem. Abstr., 47, 9966 (1953).

⁽²⁹⁷⁾ H. Gilman and J. A. Beel, J. Am. Chem. Soc., 73, 32 (1951).

⁽²⁹⁸⁾ H. Gilman, W. J. Meikle, and J. W. Morton, Jr., *ibid.*, 74, 6282 (1952).

⁽²⁹⁹⁾ D. Y. Curtin and M. J. Fletcher, J. Org. Chem., 19, 352 (1954). (300) L. Santucci and H. Gilman, J. Am. Chem. Soc., 80, 4537 (1958).

⁽³⁰¹⁾ R. Stern, J. English, Jr., and H. G. Cassidy, ibid., 79, 5797

S. F. Thames and J. E. McCleskey, J. Heterocyclic Chem., 3, 104 (302) S (1966).

insolubility of the lithium alkoxide which would form first by reaction with the phenol.

Compounds that contain free, nonphenolic, hydroxyl groups can also be metalated. Carbonation of metalated triphenylcarbinol yields the lactone of triphenylcarbinol-2,2'-dicarboxylic acid.^{5, 298} In an analogous reaction, metalation of diphenyl-

ferrocenylcarbinol (77) followed by carbonation leads to the acid 78 which can be readily converted to the lactone of 2carboxydiphenylferrocenylcarbinol (79). It is interesting to note that in this internal competition reaction between ferrocenyl and phenyl rings, the ferrocenyl ring is preferentially metalated. 303

Ivanov and coworkers¹⁷³⁻¹⁸² studied the metalation reactions of carboxylic acid salts. They demonstrated that the α

PhCH₂COONa + RLi
$$\longrightarrow$$

80 COOH
Ph-CH-COONa $\xrightarrow{CO_2, H_3O^+}$ Ph-CH
Li COOH

hydrogen in sodium phenylacetate (80) is sufficiently activated for metalation to proceed smoothly with a variety of organolithium compounds.

C. METALATION OF SULFUR COMPOUNDS

Competitive metalations have shown that sulfur heterocycles, except for thiophene, are intermediate between oxygen and nitrogen in their susceptibility toward metalation.⁵ As is typical for the metalation of other heterocyclic systems, the lithium enters in the position ortho to the sulfur atom.

Thiophene is an exception to the relative order of reactivity of the heterocycles and has been discussed along with furan in the oxygen section. When a mixture of furan and thiophene is metalated competitively with an insufficient quantity of butyllithium, the predominant product is thienyllithum.^{163, 286} This is considered to be a result of d-orbital participation. These results are quite in line with the calculated relative activities for the two compounds, since the α position in thio-

(303) R. A. Benkeser, Chem., 26, 2569 (1961). W. P. Fitzgerald, and M. S. Melzer, J. Org. phene (82) is 500 times more reactive than the equivalent position in furan (81), 163

The hydrogen-isotope effect has been studied by several workers^{227,228} for the thiophene series. Metalation of 2-deuteriothiophene shows the expected decrease in rate over nonsubstituted thiophene. These results are in accord with the accepted mechanism for ring metalation.

Gronowitz and his coworkers have studied extensively the metalation of thiophene and substituted thiophenes.^{227, 231, 304-317} Thiophene (82) is metalated by organolithium reagents ortho to the sulfur. The resultant thienyl-

lithium (83) reacts as a typical organometallic reagent in that it can be used as a metalating agent and undergoes the typical derivatization reactions.

When 2-methylthiophene is metalated, the lithium enters in the 5 position, ortho to the sulfur. However, metalation of 3-methylthiophene has been reported to go in the 5 position exclusively, 231, 318 while other workers report a mixture of products.³¹⁹ Gronowitz has shown that the methyl group in the 3 position deactivates the ring toward metalation.²³¹ When a mixture of thiophene and 3-methylthiophene is metalated competitively, 95% thienyllithium and 5% 3-methyl-5-thienyllithium are produced.

Metalation of 3-bromothiophene (84) at low temperatures, followed by carbonation, leads to 3-bromo-2-thiophenecarboxylic acid (87). 231 Gronowitz suggests that the 3-bromothio-

- (304) S. Gronowitz, Arkiv Kemi, 12, 239 (1958); Chem. Abstr., 52, 20115 (1958).
- (305) S. Gronowitz, Arkiv Kemi, 13, 269 (1958); Chem. Abstr., 53, 15056 (1959).
- (306) S. Gronowitz, Arkiv Kemi, 13, 295 (1958); Chem. Abstr., 53, 15056 (1959).
- (307) S. Gronowitz, Arkiv Kemi, 16, 363 (1960); Chem. Abstr., 55, 21092 (1961).
- (308) S. Gronowitz and B. Eriksson, Arkiv Kemi, 21, 335 (1963); Chem. Abstr., 59, 13918 (1963).
- (309) S. Gronowitz and H. Frostling, Tetrahedron Letters, 604 (1961). (310) S. Gronowitz and H. Frostling, Acta Chem. Scand., 16, 1127 (1962); Chem. Abstr., 59, 539 (1963).
- (311) S. Gronowitz and B. Gestblom, Arkiv Kemi, 18, 513 (1962).
- (312) S. Gronowitz, B. Gestblom, and B. Mathiasson, *ibid.*, 20, 407 (1963); Chem. Abstr., 59, 7459 (1963).
- (313) S. Gronowitz and R. Hakansson, Arkiv Kemi, 17, 73 (1961); Chem. Abstr., 56, 3497 (1962).

(314) S. Gronowitz and H. O. Karlsson, Arkiv Kemi, 17, 89 (1960); Chem. Abstr., 55, 27261 (1961).

(315) S. Gronowitz, P. Moses, and A. Hornfeldt, Arkiv Kemi, 17, 237 (1961).

- (316) S. Gronowitz, P. Moses, A. Hornfeldt, and R. Hakansson, *ibid.*, 17, 165 (1961); Chem. Abstr., 57, 8528 (1962).
- (317) S. Gronowitz and G. Sorlin, Arkiv Kemi, 19, 515 (1962); Chem. Abstr., 58, 5605 (1963).

(318) J. Sicé, J. Org. Chem., 19, 70 (1954).

(319) V. Ramanathan and R. Levine, ibid., 27, 1667 (1962).

phene is first converted to 3-thienyllithium (85) via halogenmetal exchange and this then metalates the remaining 3-bromothiophene to yield 3-bromo-2-thienyllithium (86). This work has been substantiated by Ostman,²²⁵ who found that excess butyllithium metalates 3-bromothiophene to yield 2,3dicarboxythiophene.

Methoxyl-substituted thiophenes undergo a normal metalation reaction. Thus 2-methoxythiophene is metalated in the 5 position,³²⁰ strongly suggesting that the coordination of the metalating agent with the sulfur is much greater than with the ether oxygen. However, 3-methoxythiophene and 3-*t*-butoxythiophene³⁰⁷ are metalated in the 2 position.

When the ether oxygen is replaced by a sulfur, as in methyl-3-thienyl sulfide, metalation occurs at the 2 position. However, when the sulfur is further activated, as in methyl 3-thienyl sulfone (88), the effect of the sulfone becomes predominant

and the α -methyl hydrogen is attacked.

When the thiophene ring is substituted with another thiophene, as in 2,2-bithienyl, metalation occurs in the expected 5 positions.³²¹ However, 2,3-bithienyl (89) is metalated in both the 2 and 5 positions, but only in the A ring. There was no

evidence of an acid formed in the B ring. The authors present several possible rationalizations for this.³²¹

The general principle is that a 3-substituted thiophene, except for 3-methylthiophene, is metalated in the 2 position and apparently is unaffected by the nature of the 3 substituent. Thus 3-cyano-,³⁰⁴ 3-bromo-,²³¹ and 3-methoxythiophene³⁰⁴ are all metalated in the 2 position. The conclusion can be drawn that the coordination of the metalating agent with the heteroatom is the predominant influence in deciding the position of metalation. The reactions of the 3-substituted thiophenes have been reviewed.³⁰⁶

The position of metalation in the aromatic sulfur heterocycles, similar to the thiophenes, is adjacent to the heteroatom.⁵ Dibenzothiophene (90) is readily metalated in the 4 position to yield 4-lithiodibenzothiophene.³²² The use of THF as the solvent greatly facilitates this metalation.¹⁵⁷ Dibenzofuran is more reactive toward metalation than is dibenzothiophene, and it is also cleaved much more readily by lithium in refluxing ether or dioxane.²⁸⁸

- (320) J. Sicé, J. Am. Chem. Soc., 75, 3697 (1953).
- (321) H. Wynberg and A. Bantjes, ibid., 82, 1447 (1960).
- (322) H. Gilman and D. L. Esmay, ibid., 75, 233 (1953).

When the sulfur is in a higher oxidation state, as in dibenzothiophene 5-oxide and dibenzothiophene 5-dioxide, metalation can be readily accomplished without loss of the oxide portions; 323, 324 however, low (-20 to -30°) temperatures are required to avoid cleavage reactions.

Metalation of thianaphthene is the most efficient procedure for the preparation of 2-substituted derivatives, illustrating again the activating influence of the sulfur through coordination. Other methods of substitution do not lead to the 2-substituted compounds. When thianaphthene is substituted in the 3 position with a methyl group (91), the site of metalation is still the 2 position.^{326,326}

Thianthrene is readily metalated *ortho* to the sulfur. However, the higher oxidation states of sulfur, thianthrene 5-oxide and thianthrene 5,5,10-trioxide, are not stable under the conditions of metalation. For example, metalation of thianthrene 5-oxide (92) leads to dibenzothiophene (93) and thianthrene

(94).³²⁷ Thianthrene 5-dioxide (95) is not cleaved but produces 4-carboxythianthrene 5-dioxide (96).³²⁸ However, thianthrene

5,5,10-trioxide (97) is cleaved, and the diphenyl sulfone derivative (98) is produced upon carbonation.³²³

The above examples illustrate that metalation increases in the order sulfide > sulfone > sulfoxide. The validity of this series is further confirmed in the nonheterocyclic sulfur compounds.

In the nonheterocyclic sulfur series, the entering metal goes *ortho*, or adjacent, to the sulfur; and when a choice is present,

- (324) H. Gilman and D. L. Esmay, ibid., 75, 278 (1953).
- (325) D. A. Shirley and M. D. Cameron, ibid., 74, 664 (1952).
- (326) D. A. Shirley, M. J. Danzig, and F. C. Canter, *ibid.*, 75, 3278 (1953).
- (327) H. Gilman and D. R. Swayampati, ibid., 77, 3387 (1955).
- (328) H. Gilman and D. R. Swayampati, ibid., 79, 208 (1957).

⁽³²³⁾ H. Gilman and D. L. Esmay, ibid., 74, 266 (1952).

the preference is for an aliphatic, or benzylic hydrogen, over an aromatic hydrogen. For example, both benzyl phenyl sulfide and benzyl phenyl sulfone are metalated on the α carbon.329 Thioanisole is only difficultly metalated on the side chain by butyllithium,⁵ but a DABCO-butyllithium complex yields 97 % side-chain metalated product in 45 min. 330

The sulfone function readily activates the adjacent position and the sulfone is sufficiently stable to survive the metalation. For example, both dimethyl sulfone³³¹ and diphenyl sulfone³³² are readily metalated by butyllithium. The relatively low reactivity of fluorine in a trifluoromethyl group is illustrated by the metalation of the methyl group rather than a halogenmetal exchange in trifluoromethyl methyl sulfone (99).³³³

$$CF_{2} \longrightarrow SO_{2} \longrightarrow CH_{3} \xrightarrow{BuLi} CF_{3} \longrightarrow SO_{2} \longrightarrow CH_{2}Li$$
99

Truce has studied the metalation of sulfones and substituted sulfones.^{208, 331, 332, 334} He demonstrated that, while a sulfone group is generally considered as one of the stronger meta directors in electrophilic aromatic substitution reactions, in metalation reactions the metal always enters a position ortho to the sulfone. If two aromatic ring systems are present, the metal enters the more activated ring, but still ortho to the sulfone group. For example, metalation of 3-bromophenyl phenyl sulfone (100), followed by carbonation, yields 54%

of 3-bromo-2-carboxyphenyl phenyl sulfone (101). In this case the product is independent of any ortho-para-directing influences of the bromo group as well as the meta-directing influences of the sulfone. Clearly initial coordination between the sulfone and the metalating agent leading to an ortho substitution is the predominant factor in determining the position of metalation.³³² When the sulfone contains two different ring systems, as in phenyl 2-thienyl sulfone (102), the metal atom enters the more activated thiophene ring 103.332

A *p*-methyl group does not have as strong an activating effect as does a bromo group in the metalation of sulfones. When

- (330) E. J. Corey and D. Seebach, ibid., 31, 4097 (1966).
- (331) W. E. Truce and K. R. Buser, J. Am. Chem. Soc., 76, 3577 (1954).
- (332) W. E. Truce and M. F. Amos, ibid., 73, 3013 (1951).
- (333) L. M. Yagupol'skii, A. G. Panteleimonov, and V. V. Orda J. Gen. Chem. USSR, 34, 3498 (1964).
- (334) W. E. Truce and O. L. Norman, J. Am. Chem. Soc., 75, 6023 (1953).

p-tolyl phenyl sulfone (104) is metalated, the lithium enters both rings, with only a slight preference for the unsubstituted

ring.334 However, Shirley has shown in a competition reaction between diphenyl sulfone and di-p-tolyl sulfone for an insufficient quantity of butyllithium, that both compounds are metalated to approximately the same extent.335 The deactivating effect of an aliphatic side chain is further substantiated in the case of p-tolyl n-butyl sulfone (105), where metalation occurs only on the α hydrogen of the butyl moiety

(106).³³⁶ A *p*-t-butyl group also has been shown to have a similar deactivating effect in this type of metalation. 230, 334, 337

When the *t*-butyl group is directly linked to the sulfone, as in t-butyl phenyl sulfone (107), metalation leads to substitu-

tion on the phenyl ring.^{338, 339} This compound is sufficiently activated that it can be dimetalated.³⁴⁰ Dimetalation is not restricted to the influences of a t-butyl group, since diphenyl sulfone can also be dimetalated.341

Wittig³⁴² has utilized the ortho-activating effect of the sulfone to prepare 108, which is intermediate between o-chloro-

phenyllithium and benzyne in its reactivity. Below -60° , 108 is converted to a benzyne intermediate.

(335) D. A. Shirley, E. A. Lehto, C. W. Holley, and H. A. Smith, J. Org. Chem., 22, 1073 (1957).

- (336) H. Fukuda, F. J. Frank, and W. E. Truce, ibid., 28, 1420 (1963). (337) D. A. Shirley and E. A. Lehto, J. Am. Chem. Soc., 79, 3481 (1957).
- (338) F. M. Stoyanovich and B. P. Fedorov, Angew. Chem. Intern. Ed. Engl., 5, 127 (1966).
- (339) F. M. Stoyanovich and B. P. Fedorov, USSR Patent 181,101; Chem. Abstr., 65, 10621 (1966).
- (340) B. P. Fedorov and F. M. Stoyanovich, USSR Patent 162,154; Chem. Abstr., 61, 9525 (1964).
- (341) K. Oita and H. Gilman, J. Org. Chem., 22, 336 (1957).
- (342) H. E. Zieger and G. Wittig, ibid., 27, 3270 (1962).

⁽³²⁹⁾ E. A. Lehto and D. A. Shirley, J. Org. Chem., 22, 989 (1957).

The ortho-, or adjacent, directing influence of sulfur has been utilized to prepare an interesting series of carbonyl de-

rivatives. The 1,3-dithianes (109) are readily metalated by organolithium reagents to give α -lithio derivatives, which can then be converted into a large number of compounds.^{343,344}

D. METALATION OF NITROGEN COMPOUNDS

Nitrogen heterocycles have been shown to be the least reactive in the series oxygen, sulfur, nitrogen. When a competition reaction is carried out between dibenzothiophene and N-ethylcarbazole for an insufficient quantity of butyllithium, only the dibenzothiophene is metalated.⁵

There are several exceptions to the general rule that metalations in systems containing a heteroatom are always metalated *ortho* to the heteroatom. Triphenylamine, triphenylarsine, and triphenylphosphine are all metalated in the *meta* position of the ring.⁵ Gilman feels that, while steric hindrance is undoubtedly responsible for part of this effect, other factors must also participate. That the less sterically hindered diphenylmethylamine is metalated in the phenyl ring and, after carbonation, yields N-methyl-N-phenylanthranilic acid, indicates that the steric effect does not operate in this case.³⁴⁵ If steric hindrance were the sole reason for the abnormal metalation, it could be expected that N-phenylcarbazole (**110**)

would also be abnormally metalated, but this does not occur. Instead, N-phenylcarbazole undergoes normal metalation in the *ortho* position of the free phenyl ring. In fact, dimetalation of this molecule leads to 2,6 metalation in the free phenyl ring.⁵

Metalation of nitrogen heterocycles proceeds in a normal fashion and the entering metal goes *ortho*, or adjacent, to the nitrogen. This is consistent with the proposed mechanism, which considers that the initial step in the metalation is coordination of the metalating agent with the free electrons on the nitrogen. However, some compounds which contain the

azomethine linkage, such as pyridine (111) and quinoline, are not metalated. Instead, the organolithium adds to produce a 2-substituted lithium salt (112). However, 2-pyridyllithium, prepared through halogen-metal exchange, is stable and can be used as a metalating agent.^{346, 347}

Picoline (2-methylpyridine) is smoothly metalated by organolithium reagents on the side-chain methyl group and reacts as a normal organometallic reagent.³⁴⁸ In a series of experiments, it has been demonstrated that in polymethyl-substituted pyridines, the 2-methyl is preferentially metalated. For example, 2,4-dimethylpyridine and 2,4,6-trimethylpyridine are metalated at the 2-methyl group.^{349,350} and dimetalation is reported to occur on the same methyl group.³⁵⁰ It has also been reported that 4-methylpyridine can be metalated on the methyl group by phenyllithium.³⁵¹⁻³⁵³

Unsubstituted pyrrole, the nitrogen analog of furan and thiophene, is not metalated, even with excess metalating agent. Instead, only the lithium salt is formed.³⁵⁴ However, N-substituted pyrroles (**113**) are smoothly metalated at the 2 posi-

tion of the ring.³⁵⁴ It is interesting to note that whereas Nphenylcarbazole is metalated on the free phenyl ring, N-phenylpyrrole is metalated in the pyrrole ring.^{354, 355} Dimetalation of N-methylpyrrole has also been accomplished, and carbonation produces N-methyl-2,5-dicarboxypyrrole.³⁵⁴

Metalation of N-substituted pyrazoles can also be accomplished readily. In this case also the metal enters at the 5 posi-

tion, analogous to the thiophenes and furans. When N-phenylpyrazole (114) is polymetalated, however, the additional lithiums enter on the phenyl ring.³⁵⁶ Metalation of 3-methyl-Nphenylpyrazoles also occurs at the 5 position of the pyrazole ring.³⁵⁷

(346) H. Gilman, W. A. Gregory, and S. M. Spatz, *ibid.*, 16, 1788 (1951).

- (348) B. M. Mikhailov and T. K. Kozminskaya, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 80 (1959); Chem. Abstr., 53, 16128 (1959).
- (349) A. D. Cale, Jr., R. W. McGinnis, Jr., and P. C. Teague, J. Org. Chem., 25, 1507 (1960).

(356) P. W. Alley and D. A. Shirley, ibid., 80, 6271 (1958).

(357) H. R. Snyder, F. Verbanac, and D. B. Bright, *ibid.*, 74, 3243 (1952).

⁽³⁴³⁾ E. J. Corey and D. Seebach, Angew. Chem. Intern. Ed. Engl., 4, 1075 (1965).

⁽³⁴⁴⁾ E. J. Corey and D. Seebach, *ibid.*, 4, 1077 (1965).

⁽³⁴⁵⁾ H. Gilman and S. M. Spatz, J. Org. Chem., 17, 860 (1952).

⁽³⁴⁷⁾ A. J. Nunn and K. Schofield, J. Chem. Soc., 589 (1952).

⁽³⁵⁰⁾ J. I. de Jong and J. P. Wibaut, *Rec. Trav. Chim.*, 70, 962 (1951).
(351) J. W. Hey and J. P. Wibaut, *ibid.*, 72, 522 (1953).

⁽³⁵²⁾ J. P. Wibaut and J. W. Hey, Chem. Weekblad, 49, 169 (1953); Chem. Abstr., 48, 2704 (1954).

⁽³⁵³⁾ J. P. Wibaut and J. W. Hey, Rec. Trav. Chim., 72, 513 (1953).

⁽³⁵⁴⁾ D. A. Shirley, B. H. Gross, and P. A. Roussel, J. Org. Chem., 20, 225 (1955).

⁽³⁵⁵⁾ D. A. Shirley and P. A. Roussel, J. Am. Chem. Soc., 75, 375 (1953).

N-Substituted imidazoles (115) are metalated in the 2 position, adjacent to both nitrogens,³⁵⁸ the 2 position of the ring taking precedence over the benzylic hydrogen. When N-phenylimidazole is dimetalated, the second lithium enters on the free phenyl ring.

The metalation of indole follows the same pattern as for pyrrole.³⁵⁵ Unsubstituted indoles metalate only on the nitrogen. N-Phenylindoles (**116**) are metalated preferentially at

the 2 position of the pyrrole ring; when dimetalated, the second lithium enters the free phenyl ring.³⁵⁵ While N-substituted benzimidazoles are readily metalated in the 2 position, these reactions are much more successful at lower temperature. At room temperature dimers of the parent compound are frequently obtained.³⁵⁹

Metalation has also been reported for the pyridotetrazoles (117).⁸⁶⁰ Unsubstituted pyridotetrazoles are metalated at both

the 5 and 8 positions, 8-methylpyridotetrazole is metalated at the 5 position, but 5-methylpyridotetrazole is metalated on the methyl group. Pyrimidines³⁶¹ and 2,5-dimethylpyrazines³⁶² are not metalated by organolithium reagents; instead lithum salts are formed.

Relatively few metalations have been carried out on the Nsubstituted carbazoles compared to other nitrogen heterocycles.¹⁵⁷ In the few reported metalations using diethyl ether as the solvent, very low yields of acids were obtained after carbonation. However, it has recently been demonstrated that the use of THF-ether as the metalating solvent greatly increases the yield of metalated product. The N-substituted carbazoles

- (358) D. A. Shirley and P. W. Alley, J. Am. Chem. Soc., 79, 4922 (1957).
- (359) P. W. Alley and D. A. Shirley, J. Org. Chem., 23, 1791 (1958).
 (360) J. H. Boyer and R. F. Reinisch, J. Am. Chem. Soc., 82, 2218
- (1960) J. 11. Doyol and K. F. Kennsen, J. Am. Chem. 500., 62, 2210 (1960).
- (361) T. L. V. Ulbricht, J. Chem. Soc., 6649 (1965).
- (362) B. Klein and P. E. Spoerri, J. Am. Chem. Soc., 73, 2949 (1951).

(118) follow the general rules for normal metalation, and the lithium enters the 2 position, adjacent to the nitrogen. 157

Many interesting nonheterocyclic nitrogen compounds have been metalated since the previous review.⁵ Both diazomethane (119)^{363,364} and diazoethane³⁶⁵ have been metalated by methyllithium, and some of their reactions have been studied.³⁶⁶⁻³⁶⁸

 $\begin{array}{cccc} CH_2N_2 &+ & CH_3Li &\longrightarrow & (CHN_2)Li & \xrightarrow{PhCOBr} \\ 119 & & & & \\ & & & & \\ HC & & & & C & PI \\ & & & & HC & & \\ & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & & & HC & & \\ & & & HC & & \\ & & & HC & & & \\ &$

Two groups working independently have discovered that phenylacetonitrile (120) can be smoothly metalated at the

 α carbon. Kaiser has shown that pure, α -substituted phenylacetonitriles can be prepared readily by this route,^{155, 369} and Ivanov^{181, 182} has explored the synthetic utility of the reaction. It has also been demonstrated that α -substituted phenylacetonitriles can be metalated.³⁷⁰ In addition, phenylacetamide (**121**) undergoes trimetalation.³⁷¹

Primary, secondary, and tertiary amines can generally be metalated smoothly with the metal entering the α position adjacent to the nitrogen. The only exception to this, triphenylamine, has already been discussed. When unsubstituted primary and secondary amines are metalated, proportionally more of the metalating agent is required to replace that consumed by the active hydrogens on the nitrogen. In the case of tertiary amines, such as N,N-dimethylaniline, metalation proceeds smoothly to produce a ring-substituted derivative. There is no reported metalation of the methyl groups.³⁷²

- (363) E. Muller and D. Ludsteck, Chem. Ber., 87, 1887 (1954).
- (364) E. Muller and D. Ludsteck, ibid., 88, 921 (1955).
- (365) E. Muller and W. Rundel, ibid., 89, 1065 (1956).
- (366) E. Muller and W. Rundel, ibid., 90, 1299 (1957).
- (367) E. Muller and W. Rundel, ibid., 90, 1302 (1957).
- (368) E. Muller and W. Rundel, ibid., 90, 2673 (1957).
- (369) E. M. Kaiser and C. R. Hauser, J. Org. Chem., 31, 3873 (1966).
- (370) G. F. Morris and C. R. Hauser, ibid., 27, 465 (1962).
- (371) E. M. Kaiser, R. L. Vaulx, and C. R. Hauser, Tetrahedron Letters, 4833 (1966).
- (372) A. R. Lepley, W. A. Khan, A. B. Giumanini, and A. G. Giumanini, J. Org. Chem., 31, 2047 (1966).

Hauser and his coworkers have studied extensively the metalation of N,N-dimethylbenzylamines (122). They demonstrated 373 that when this compound is treated with butyllith-

ium, the lithium enters on the ring in the *ortho* position. When 122 is metalated by butylsodium, the initial site of metalation is the ortho position, but upon heating, it isomerizes to the α -sodio derivative. The α -sodio compound was converted to the lithium derivative via lithium bromide in ether-benzeneoctane. When this α -lithio compound was heated to 48°, it reverted to the ortho ring derivative, indicating that the ortho position is more stable than the α position for lithium. This type of isomerization by sodium compounds has been observed and discussed by others.223

The initial step in the reaction between the benzyldimethylamines and butyllithium is assumed to be the coordination between the metal and the free pair of electrons on the nitrogen. The authors feel that the ortho position is more readily attacked by lithium because of the greater stabilization afforded by the formation of the five-membered ring.³⁷³ Later work has shown that these ortho lithio derivatives react normally with a wide variety of derivatizing agents. 374, 375

The ortho lithiation reaction has also been extended to other systems. 376-378 For example, N-methylbenzamide, after metalation, yields an ortho lithio derivative which undergoes normal organometallic reactions.³⁷⁸ It is interesting to note that unsubstituted benzamide does not undergo this metalation reaction.

ortho lithiation can also be accomplished in systems that contain additional CH₂ groups between the phenyl ring and

the nitrogen. Hauser has reported 379 that systems (123) with an odd number, *i.e.*, n = 1 or 3, of CH₂ groups in a chain can be ortho lithiated, whereas those where n is an even number cannot be metalated. These results are in conflict with the reported ortho lithiation of *B*-phenethyldimethylamine.³⁸⁰ Hauser has demonstrated that α -phenylpropyldimethylamine, n = 3, is metalated on the benzylic carbon³⁷⁹ and that (β,β) dimethyl- β -phenylethyl)dimethylamine is metalated at the ortho position.

- (373) W. H. Puterbaugh and C. R. Hauser, J. Am. Chem. Soc., 85, 2467 (1963).
- (374) F. N. Jones, R. L. Vaulx, and C. R. Hauser, J. Org. Chem., 28. 3461 (1963). (375) F. N. Jones M. F. Zinn, and C. R. Hauser, ibid., 28, 663 (1963).
- (376) R. L. Gay, T. F. Crimmins, and C. R. Hauser, Chem. Ind-(London), 1635 (1966).
- (377) N. S. Narasimhan and A. C. Ranade, Tetrahedron Letters, 4145 (1965).
- (378) W. H. Puterbaugh and C. R. Hauser, J. Org. Chem., 29, 853 (1964). (379) R. L. Vaulx, F. N. Jones, and C. R. Hauser, *ibid.*, 30, 58 (1965).
- (380) N. S. Narasimhan and A. C. Ranade, *Tetrahedron Letters*, 603 (1966).

When one of the ortho positions is substituted with a methyl group, as in o-methylbenzyldimethylamine (124), the methyl

group is metalated in preference to the ring.³⁸¹ This type of methyl metalation has also been demonstrated in the case of 2-methyl-N-methylbenzamide, 382

In view of the much greater metalating ability of butyllithium complexed with DABCO or TMEDA, both of which are tertiary amines, it is entirely possible that a similar type of situation prevails in the metalation of the benzyldimethylamines. In this case, the complexation occurs intramolecularly.

E. METALATION OF MIXED HETEROCYCLIC COMPOUNDS

Metalation studies of mixed heterocyclic systems provide interesting insights into the relative reactivity of oxygen, sulfur, and nitrogen in intramolecular reactions. The same general rule of oxygen > sulfur > nitrogen in increasing order of reactivity prevails.

Phenoxathiin (125) is readily monometalated by butyllith-

ium in the 4 position, ortho to the oxygen.^{5, 383} However, dimetalation leads to a mixture of products. After carbonation, both the 4,6-diacids and the 1,6-diacids are obtained in a ratio of 4:1. 384, 385 Under more severe conditions, the sulfur moiety is cleaved and, after carbonation, the product is o-phenoxybenzoic acid.³⁸⁶ When the sulfur is further activated, as in phenoxathiin 10-dioxide, the sulfone takes precedence over the oxygen, and metalation occurs in the 1 position, ortho to the sulfone, 385

Monometalation of phenoxazine (126) has been reported,

⁽³⁸¹⁾ R. L. Vaulx, F. N. Jones, and C. R. Hauser, J. Org. Chem., 29, 1387 (1964).

- (382) R. L. Vaulx, W. H. Puterbaugh, and C. R. Hauser, *ibid.*, 29, 3514 (1964).
- (383) S. H. Eidt, Iowa State Coll. J. Sci., 31, 397 (1957).
- (384) H. Gilman and S. H. Eidt, J. Am. Chem. Soc., 78, 2633 (1956).
- (385) D. A. Shirley and E. A. Lehto, ibid., 77, 1841 (1955).
- (386) H. Gilman and S. H. Eidt, ibid., 78, 3848 (1956).

and the metal enters ortho to the oxygen.²⁸⁴ Metalation of the sydnones (127) has also been accomplished, and in this case

the metal enters the very activated 4 position. 387

Considerably more work has been done on the mixed nitrogen-sulfur heterocycles. In all of the single ring compounds, the metal enters adjacent to the sulfur. Isothiazole (128), for example, is metalated in the 5 position, adjacent to the sul-

fur.³⁸⁸ The *ortho* effect of both sulfur and nitrogen direct to the same position in the thiazole nucleus,³⁸⁹ and metalation occurs only at this 2 position. Even 4-methylthiazole is metalated at the 2 position.³⁹⁰ In fact, the preference for this position is so dominant that 2,5-dimethylthiazole (**129**) is metalated on the 2-methyl group.³⁹¹

When the nitrogen and sulfur are in different rings, as in N-benzylthieno[3,2-b]pyrrole (130) and the nitrogen is substituted by a benzylic carbon, metalation still occurs *ortho* to the sulfur. Metalation of N-methylphenothiazine also produces an *ortho* sulfur derivative.³⁹²

The above reactions indicate the following order of decreasing reactivity: $SO_2 > O > S > N$. While this order is undoubtedly empirically correct for the compounds listed, it is unfortunate that in all of the nitrogen metalations, the nitrogen must be further substituted to prevent salt formation. This obviously does not allow for direct comparisons between groups to be made.

In an attempt to resolve this problem and to bring the nitrogen more clearly in line with the other relative metalation reactions, Shirley has studied the metalation of fused ring phenothiazines (131). These compounds are sufficiently sterically hindered that salt formation does not occur at the nitrogen.³⁹³ He found that in every fused-ring phenothiazine

- (391) J. Beraud and J. Metzger, Bull. Soc. Chim. France, 2072 (1962).
- (392) D. A. Shirley and J. C. Goan, J. Organometal. Chem., 2, 304 (1964).
 (393) D. A. Shirley and J. C. Liu, J. Org. Chem., 25, 1189 (1960).

examined, metalation always occurred adjacent to the nitrogen and preferably on the naphthalene ring.³⁹³⁻³⁹⁶ These results indicate that the sulfur over nitrogen preference in the reactivity relationship may not be correct. However, more work is necessary before definite conclusions can be made.

F. METALATION OF GROUP IVA COMPOUNDS

The preparations and reactions of many of the group IVA organometallic compounds have been reviewed. ^{16, 17, 44, 397}

The organic derivatives of the group IVA elements are metalated very similarly to their more usual carbon analogs.³⁹⁸ For example, triphenylbenzylsilane (**132**) is metalated adjacent to

$$Ph_{a}SiCH_{2}Ph \xrightarrow{Bull} Ph_{3}Si-CHPh$$

 \downarrow
Li

the silyl atom and undergoes the normal derivatization reactions.³⁹⁹ Organogermyl compounds (133) are also smoothly

metalated to produce organogermyllithium derivatives.^{400,401} These derivatives can then be reacted further with a wide variety of derivatizing agents to produce germyl-substituted compounds.⁴⁰¹⁻⁴⁰³

Many of these organometallic reagents have been used as metalating agents for other compounds and also to establish their relative metalating ability.^{271,404-407}

It has been suggested that the group IVA organolithium compounds exist as an equilibrium mixture with the diphenyl-

$$Ph_3M$$
—Li \implies Ph_2M + $PhLi$
 M = Sn or Pb

metallic compound and phenyllithium.⁴⁰⁴ It was further suggested that the actual metalating agent in this case was phenyllithium and not the group IVA organometallic compound. Gilman^{271,407} has shown that carbonation of the group IVA organometallic compound does not produce any benzoic acid, which surely would be formed if the above equilibrium existed to any extent.

- (406) H. Gilman and F. K. Cartledge, J. Organometal. Chem., 3, 255 (1965).
- (407) H. Gilman and C. W. Gerow, J. Org. Chem., 23, 1582 (1958).

⁽³⁸⁷⁾ C. V. Greco, M. Pesce, and J. M. Franco, J. Heterocyclic Chem., 3, 391 (1966).

⁽³⁸⁸⁾ M. P. L. Caton, D. H. Jones, R. Slack, and K. R. H. Wooldridge, J. Chem. Soc., 446 (1964).

⁽³⁸⁹⁾ J. Metzger and B. Koether, Bull. Soc. Chim. France, 708 (1953). (390) R. Breslow and E. McNelis, J. Am. Chem. Soc., 81, 3080 (1959).

⁽³⁹⁴⁾ D. A. Shirley and J. C. Gilmer, ibid., 27, 4421 (1962).

⁽³⁹⁵⁾ D. A. Shirley and T. G. Jackson, J. Organometal. Chem., 2, 188 (1964).

⁽³⁹⁶⁾ D. A. Shirley and W. E. Tatum, J. Org. Chem., 25, 2238 (1960).
(397) H. Schumann and M. Schmidt, Angew. Chem. Intern. Ed. Engl., 4, 1007 (1965).

⁽³⁹⁸⁾ V. G. Greber and A. Balciunas, Macromol. Chem., 71, 62 (1964).

⁽³⁹⁹⁾ H. Gilman and H. Hartzfeld, J. Am. Chem. Soc., 73, 5878 (1951).

⁽⁴⁰⁰⁾ H. Gilman and C. W. Gerow, ibid., 78, 5435 (1956).

⁽⁴⁰¹⁾ D. A. Nicholson and A. L. Allred, Inorg. Chem., 4, 1747 (1965).

⁽⁴⁰²⁾ H. Gilman and C. W. Gerow, J. Am. Chem. Soc., 79, 342 (1957).

⁽⁴⁰³⁾ D. A. Nicholson and A. L. Allred, *Inorg. Chem.*, 4, 1751 (1965). (404) J. d'Ans, H. Zimmer, E. Endrulat, and K. Lubke, *Naturwissenschaften*, 39, 450 (1952).

⁽⁴⁰⁵⁾ A. G. Brook and H. Gilman, J. Am. Chem. Soc., 76, 2338 (1954).

Most of the group IVA organometallic compounds prepared so far have contained phenyl groups. Gilman has recently reported the preparation of a branched aliphatic chain silyllithium compound. 408

G. METALATION OF HALOORGANIC COMPOUNDS

One of the standard methods of preparing organolithium compounds is via halogen-metal exchange. Normally these compounds are prepared in ethereal or hydrocarbon solvents at room temperature. 409 Recently, Köbrich and his coworkers 187 demonstrated that, using different conditions, compounds containing halogens (chlorine and bromine) can be metalated to yield haloorganolithium compounds. For example, trans-1,2-

dichloroethylene (134) has been metalated and, after carbonation, produced a 99% yield of trans-2,3-dichloroacrylic acid (135).^{192,193} These haloorganolithium compounds are stable at low temperatures and undergo all of the normal organometallic reactions. Köbrich has applied the generic term "carbenoid" to these compounds.

A wide variety of carbenoid compounds has been prepared, 187 for example, dichloromethyllithium 186, 194, 198, 202 trichloromethyllithium, 186, 194, 195, 240 and mono-, di-, and trichlorovinyllithium. 192, 193, 202 These syntheses have also been extended to the aromatic systems, where such compounds as α -chlorobenzyllithium^{184, 185} have been synthesized.

The successful synthesis of carbenoids is dependent upon reaction conditions which are both conducive to the synthesis and in which the carbenoids are relatively stable. THF accelerates their formation, and most of the carbenoids, except for trichlorovinyllithium, are stable in THF. The "Trapp" mixture (THF, ether, and hexane in a 4:1:1 ratio) has also been used. The advantages of THF have been demonstrated by other workers also.¹⁸⁴ Most of these preparations are successful only at low $(-80 \text{ to } -100^\circ)$ temperatures.

The carbenoids have been employed in carbene-type syntheses 237-239, 241, 254, 410-413 and various other syntheses. 414-416 Use has also been made of the tendency for carbenoids to eliminate lithium halide at higher temperatures. 197, 417

The following order of relative stability has been established for the carbenoids: $Ph_2C = C(Li)Cl = CH_3O < CH_3 < H < CH_3 = CH_3O < CH_3 < CH_3 < H < CH_3 < C$ Cl and ortho < para for substituents on the phenyl ring;²⁰¹ trans-CHCl=CClLi > CH₂=CClLi > CCl₂=CClLi > cis-CHCl=CClLi.192 The reactivity decreases in the following order: PhCCl₂Li \sim CCl₃Li \gg Ph₂CClLi \sim CCl₂HLi.¹⁸⁶ Some

- (410) H. Gilman and D. Aoki, J. Organometal. Chem., 1, 449 (1964).
- (411) H. Gilman and D. Aoki, ibid., 2, 44 (1964).
- (412) H. Gilman and D. Aoki, ibid., 2, 89 (1964).
- (413) M. Schlosser and V. Ladenberger, Angew. Chem. Intern. Ed. Engl., 5, 519 (1966).
 (414) D. Y. Curtin and W. H. Richardson, J. Am. Chem. Soc., 81, 4719 (1959).
- (415) M. Lipp and D. Bernstein, Naturwissenschaften, 42, 578 (1955); Chem. Abstr., 51, 11293 (1957).
- (416) J. Normant, Bull. Soc. Chim. France, 1876 (1963).
- (417) K. Griesbaum, Angew. Chem. Intern. Ed. Engl., 5, 933 (1966).

bromolithium compounds have been prepared, but these are much less stable than the corresponding chloro compounds. 188

An interesting practical application of a carbenoid reaction is illustrated by the reaction between butyllithium and α -chloropropylene oxide. (136). At low temperatures in THF only

$$Cl-CH_2-CH-CH_2 + BuLi \xrightarrow{THF} Cl CH_2 + CH_2 + BuLi \xrightarrow{THF} H$$

the trans isomer 137 is formed, but if the solvent is changed or the temperature raised, a mixture of cis and trans isomers is obtained. 153

Both carbenoids and benzynes⁴⁴ can be considered as special cases of halohydrocarbon metalations. However, some aromatic halogen compounds can also be metalated in the normal sense of the term. Gilman¹⁸³ first demonstrated that

o-bromofluorobenzene (138) could undergo metal-halogen exchange at very low temperatures without benzyne formation. Since then, many fluorinated compounds have been successfully metalated. For example, pentafluorobenzene (139)

has been metalated and carbonated to produce pentafluorobenzoic acid in good yield. 418, 419 Pentachlorobenzoic acid has been prepared similarly.138,420

Tamborski has demonstrated that even 1,3-difluorobenzene (140) can be successfully metalated. This compound is relatively stable at low temperatures, but upon warming it quickly decomposes to benzyne.⁴²¹ Fluoroolefins are not nor-

mally metalated, but instead react with organometallic compounds. 422, 423 The chemistry of organofluorine compounds, including the organometallic reactions, has been reviewed. 424

- (419) C. Tamborski and E. J. Soloski, ibid., 31, 743 (1966).
- (420) C. Tamborski, E. J. Soloski, and C. E. Dills, Chem. Ind. (London), 2067 (1965).
- (421) C. Tamborski and E. J. Soloski, J. Org. Chem., 31, 746 (1966).
- (422) P. Tarrant, P. Johncock, and J. Savory, ibid., 28, 839 (1963).
- (423) P. Tarrant, J. Savory, and E. S. Iglehart, ibid., 29, 2009 (1964).
- (424) H. Heaney, Organometal. Chem. Rev., 1, 27 (1966).

⁽⁴⁰⁸⁾ H. Gilman, J. M. Holmes, and C. L. Smith, Chem. Ind. (London), 848 (1965).

⁽⁴⁰⁹⁾ G. F. Wright in "Steric Effects in Organic Chemistry," M. S. Newman, Ed., John Wiley and Sons, New York, N. Y., 1956, p 394.

⁽⁴¹⁸⁾ R. J. Harper, Jr., E. J. Soloski, and C. Tamborski, J. Org. Chem., 29, 2385 (1964).

H. METALATION OF METALLOCENES

Since their initial discovery, the metallocenes, more specifically ferrocene, have provoked wide interest among chemists. There are numerous review articles covering the preparations, reactions, and metalations of these compounds. 44, 425-428

The first metalation of ferrocene was reported by two independent groups. Benkeser 429 found that butyllithium metal-

ates ferrocene (141) to give a mixture of mono- and dilithiated ferrocenes. Similar results have also been reported by Nesmeyanov.⁴³⁰ The hydrogens in ferrocene are evidently more acidic than in benzene, since the latter is not metalated appreciably by butyllithium.^{429,431} Indeed, even in the metalation of phenyl-substituted ferrocenes, which can be considered to be an intramolecular competition reaction, there is no evidence of phenyl metalation.³⁰³ The metalation procedures and yields have been improved by other workers. 432-437 The overall vield of metalated product can be increased by using the mixed solvent system THF-ether. 158

One of the biggest difficulties in the metalation of ferrocene has been to control the reaction to obtain either mono- or dilithiated compounds. The ortho lithiation reaction, discovered by Hauser. 438, 439 is presently the most efficient method to ob-

tain a monolithiated ferrocene. Lithiation of these aminomethylated ferrocenes (142) is considerably faster than lithiation of unsubstituted ferrocenes.438 This reaction has been extended by other workers to produce 2-substituted derivatives of aminomethylated ferrocenes. 376

- (425) A. N. Nesmeyanov, Bull. Soc. Chim. France, 1229 (1965).
- (426) M. D. Rausch, Can. J. Chem., 41, 1289 (1963).
- (427) M. D. Rausch, Advances in Chemistry Series, No. 37, American Chemical Society, Washington, D. C., 1963, p 56.
- (428) M. D. Rausch, M. Vogel, and H. Rosenberg, J. Org. Chem., 22, 900 (1957).
- (429) R. A. Benkeser, D. Goggin, and G. Schroll, J. Am. Chem. Soc., 76, 4025 (1954).
- (430) A. N. Nesmeyanov, E. G. Perevalova, R. V. Golovnya, and O. A. Nesmeyanova, Dokl. Akad. Nauk SSSR, 97, 459 (1954); Chem. Abstr., 49, 9633 (1955).
- (431) R. A. Benkeser and J. L. Bach, J. Am. Chem. Soc., 86, 890 (1964).
- (432) S. I. Goldberg, L. H. Keith, and T. S. Prokopov, J. Org. Chem., 28, 850 (1963).
- (433) S. I. Goldberg, D. W. Mayo, M. Vogel, H. Rosenberg, and M. D. Rausch, *ibia.*, 24, 824 (1959).
- (434) G. R. Knox and P. L. Pauson, J. Chem. Soc., 4610 (1961).
- (435) A. N. Nesmeyanov, E. G. Perevalova, and Z. A. Beinoravichute, Dokl. Akad. Nauk SSSR, 112, 439 (1957); Chem. Abstr., 51, 13855
- (1957).
- (436) A. N. Nesmeyanov, E. G. Perevalova, L. P. Yur'eva, and L. I. Denisovich, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk,* 2241 (1962); *Chem. Abstr.*, 58, 12597 (1963).
- (437) P. L. Pauson, J. Am. Chem. Soc., 76, 2187 (1954).
- (438) D. W. Slocum, B. W. Rockett, and C. R. Hauser, Chem. Ind. (London), 1831 (1964).
- (439) D. W. Slocum, B. W. Rockett, and C. R. Hauser, J. Am. Chem. Soc., 87, 1241 (1965).

Metalation reactions have also been accomplished with substituted ferrocenes. Both isopropylferrocene⁴³¹ and diphenylferrocenylcarbinol³⁰³ have been successfully metalated. Ferrocenylmethyllithium has been prepared via an ether cleavage reaction.440

Treatment of lithiated ferrocenes with the appropriate reagents leads to substituted ferrocenes. For example, ferrocene derivatives containing silicon, 441 boron, 442-445 azo groups, 446 methyl groups, 447 and amino groups 448, 449 have been prepared.

Lithiated cyclopentadienyl compounds react with ferrous chloride to produce ferrocenes. 447, 450, 451 This procedure has provided another route to ferrocenes of known structure.

Metallocenes other than ferrocene have been successfully metalated by organolithium compounds. 452, 453 The general order of reactivity toward metalation decreases in the order ferrocene > ruthenocene > osmocene. Ditolylchromium has also been dimetalated by butyllithium, and carbonation yields a dicarboxylic acid.454

I. METALATION OF PHOSPHORUS COMPOUNDS

Metalation of the simple phosphines produces α -lithiophosphines. For example, diphenylphosphine is metalated to produce diphenylphosphinyllithium. If an aliphatic moiety is present, the first metalation usually occurs on the alkyl group, 455-458 but dimetalation is less discriminant. 456 Phenyldimethylphosphine (143) is monometalated in only the methyl group,456

whereas the second lithium enters either the methyl or phenyl position.

Phosphorus shows a similar ortho effect to the oxygen, sulfur, nitrogen heteroatoms in that the metal usually enters adjacent to the phosphorus. This is true even in addition reacactions; the addition of butyllithium to disubstituted vinyl-

- (440) A. N. Nesmeyanov, E. G. Perevalova, and Yu. A. Ustynyuk. Proc. Acad. Sci. USSR, 133, 921 (1960).
- (441) R. L. Schaaf, P. T. Kan, C. T. Lenk, and E. P. Deck, J. Org. Chem., 25, 1986 (1960).
- (442) A. N. Nesmeyanov, V. A. Sazonova, and V. N. Drosd, Proc. Acad. Sci. USSR, 126, 437 (1959).
- (443) A. N. Nesmeyanov, V. A. Sazonova, and V. N. Drosd, Chem. Ber., 93, 2717 (1960); Chem. Abstr., 55, 4462 (1961).

(444) A. N. Nesmeyanov, V. A. Sazonova, and A. V. Gerasimenko, Proc. Acad. Sci. USSR, 147, 1027 (1962).

- (445) H. Shechter and J. F. Helling, J. Org. Chem., 26, 1034 (1961). (446) A. N. Nesmeyanov, E. G. Perevalova, and T. V. Nikitina, Proc. Acad. Sci. USSR, 138, 584 (1961).
- (447) A. N. Nesmeyanov, E. G. Perevalova, Z. A. Beinoravichute, and I. L. Malygina, Dokl. Akad. Nauk SSSR, 120, 1263 (1958); Chem. Abstr., 53, 1293 (1959).
- (448) G. R. Knox and P. L. Pauson, J. Chem. Soc., 4615 (1961).
- (449) A. N. Nesmeyanov, E. G. Perevalova, R. V. Golovnya, and L. S. Shilovtseva, Dokl. Akad. Nauk SSSR, 102, 535 (1955); Chem. Abstr., 50, 492.5 (1956).
- (450) H. B. Sokolova, M. P. Shebanova, and H.-C. Chou, J. Gen. Chem. USSR, 33, 210 (1963).
- (451) L. Summers, R. H. Uloth, and A. Holmes, J. Am. Chem. Soc., 77, 3604 (1955).
- (452) G. R. Knox, J. D. Munro, P. L. Pauson, G. H. Smith, and W. E. Watts, J. Chem. Soc., 4619 (1961).
- (453) M. D. Rausch, E. O. Fischer, and H. Grubert, J. Am. Chem. Soc., 82, 76 (1960).
- (454) H. P. Fritz and E. O. Fischer, Z. Naturforsch., 12B, 67 (1957). (455) A. M. Aguiar, J. Giacin, and A. Mills, J. Org. Chem., 27, 674 (1962).
- (456) D. J. Peterson and J. H. Collins, ibid., 31, 2373 (1966).
- (457) D. J. Peterson and H. R. Hays, ibid., 30, 1939 (1965).
- (458) J. J. Richard and C. V. Banks, ibid., 28, 123 (1963).

$$\begin{array}{c} R_2PCH==CH_2 + BuLi \longrightarrow R_2P--CH--CH_2-Bu \\ 144 \\ Li \\ Li \end{array}$$

phosphine (144) results in the lithium adding adjacent to the phosphorus. 459

It is interesting to contrast the behavior of diphenylmethylamine with diphenylmethylphosphine toward metalation. As discussed previously, the amine gives only meta ring metalation,³⁴⁵ but the phosphine is metalated only on the methyl group. 457

Seyferth has shown that triphenylphosphine oxide (145)

$$Ph_3PO + CH_3Li \longrightarrow Ph_2P(O)CH_3 + PhLi$$

145
 $Ph_2P(O)CH_3 + PhLi \longrightarrow Ph_2P(O)CH_2Li + PhH$
146

reacts with organolithium reagents through a combination of transmetalation and metalation reactions which over-all lead to a lithiated phosphine (146). 460, 461 A similar reaction occurs with triphenylphosphine sulfide.⁴⁶² These same workers have also studied the reactions of phosphine-methylene compounds with organolithium reagents. 463-466

J. METALATION OF ORGANOBORON COMPOUNDS

The metalation reactions of carboranes, which are known in the Russian literature as barenes, were described along with the first preparation of these new compounds.⁴⁶⁷ For example, the parent carborane (147) compound has been metalated by

HC CH BuLi HC CLi BuLi
B₁₀H₁₀
$$HC$$
 CLi BuLi
147 Li C CLi
B₁₀H₁₀ CLi

butyllithium to yield a monolithium derivative which undergoes the normal organometallic derivatization reactions. The metalation reaction can be controlled to produce either monoor dilithiated carboranes, 448, 468-471 with a variety of organometallic compounds. 47 2-474 It is interesting to note that phenylcarborane (148) is similar to the ferrocenes in that metalation

- (459) D. J. Peterson, J. Org. Chem., 31, 950 (1966).
- (460) D. Seyferth, D. E. Welch, and J. K. Heeren, J. Am. Chem. Soc., **85**, 642 (1963).
- (461) D. Seyferth, D. E. Welch, and J. K. Heeren, ibid., 86, 1100 (1964).
- (462) D. Seyferth and D. E. Welch, J. Organometal. Chem., 2, 1 (1964).
- (463) D. Seyferth, J. Fogel, and J. K. Heeren, J. Am. Chem. Soc., 88, 2207 (1966).
- (464) D. Seyferth, J. K. Heeren, G. Singh, and, in part, S. O. Grim and W. B. Hughes, J. Organometal. Chem., 5, 267 (1966).
- (465) D. Seyferth, W. B. Hughes, and J. K. Heeren, J. Am. Chem. Soc., 87, 2847 (1965).
- (466) D. Seyferth, W. B. Hughes, and J. K. Heeren, *ibid.*, 87, 3467 (1965).
- (160).
 (467) L. I. Zakharkin, V. I. Stanko, V. A. Brattsev, Yu. A. Chapovskii,
 A. I. Klimova, O. Yu. Oxlobystin, and A. A. Ponomarenko, *Proc. Acad. Sci. USSR*, 155, 371 (1964).
 (468) J. W. Ager, Jr., and T. L. Heying, U. S. Patent 3,148,219; *Chem. Abstr.*, 61, 14710 (1964).
- (469) R. P. Alexander and H. Schroeder, Inorg. Chem., 2, 1107 (1963). (470) T. L. Heying, J. W. Ager, Jr., S. L. Clark, R. P. Alexander, S. Papetti, J. A. Reid, and S. I. Trotz, *ibid.*, 2, 1097 (1963).
- (471) L. I. Zakharkin, V. I. Stanko, A. I. Klimova, and Yu. A. Chapov-skii, Izv. Akad. Nauk SSSR, Ser. Khim., 2236 (1963); Chem. Abstr., 60, 9301 (1964).
- (472) D. Grafstein, J. Bobinski, J. Dvorak, H. F. Smith, N. Schwartz, M. S. Cohen, and M. M. Fein, *Inorg. Chem.*, 2, 1120 (1963).
 (473) L. I. Zakharkin, V. I. Bregadze, and O. Yu. Okhlobystin, J. Organometal. Chem., 4, 211 (1965).
- (474) L. I. Zakharkin and A. V. Kazantsev, J. Gen. Chem. USSR, 36, 1301 (1966).

Ph-C-CH Buli Ph-C C-Li
B₁₀H₁₀
$$B_{10}H_{10}$$

occurs only in the carboranyl moiety. There is no evidence of metalation in the phenyl ring.

The metalation of carboranes has been used to prepare a wide variety of derivatives after treatment with the appropriate reagents. In this way carboxylic acids, 467, 475-477 silane derivatives, 478, 479 phosphine derivatives, 469 alcohols, 479-483 and mercury derivatives, 473 have all been prepared.

The preparation of carboranes and their derivatives has been the subject of several United States patents. 468, 475, 478, 480, 481

Metalation reactions have also been described for neocarboranes, which are isomers of the carboranes.484

Organoboron compounds other than the carboranes 485-487 can also be metalated. For example, metalation of dihydroborated terminal acetylenes (149) followed by carbonation is reported to yield substituted malonic acids.485 However, this

....

work has been questioned by others⁴⁸⁷ who claim that there is no evidence for a 1,1-dilithiated compound.

In the years covered by this review, the first metalation of an aromatic selenium compound (150) has been reported. As

expected, the metal enters the position peri to the heteroatom. 488

VI. Summary and General Trends in Organolithium Research

Recent developments in the metalation reactions of organolithium compounds have been reviewed through 1966. Metal-

- (476) L. I. Zakharkin, V. N. Kalinin, and A. I. L'vov, Izv. Akad. Nauk SSSR, Ser. Khim., 1091 (1966); Chem. Abstr., 65, 10604 (1966). (477) L. I. Zakharkin and A. I. L'vov, J. Organometal. Chem., 5, 313
- (1966)(478) S. Papetti, U. S. Patent 3,137,719; Chem. Abstr., 61, 5692 (1964).
- (479) S. Papetti and T. L. Heying, Inorg. Chem., 2, 1105 (1963). (480) T. L. Heying, U. S. Patent 3,167,590; Chem. Abstr., 62, 9173 (1965).
- (481) T. L. Heying and R. P. Alexander, U. S. Patent 3,117,164; Chem. Abstr., 60, 6866 (1964). (482) L. I. Zakharkin and A. V. Kazantsev, J. Gen. Chem. USSR, 36,
- 958 (1966). (483) L. I. Zakharkin and A. V. Kazantsev, ibid., 36, 960 (1966).
- (484) D. Grafstein and J. Dvorak, Inorg. Chem., 2, 1128 (1963).
- (485) G. Cainelli, G. Dal Bello, and G. Zubiani, Tetrahedron Letters, 3429 (1965). (486) G. Cainelli, G. Dal Bello, and G. Zubiani, ibid., 4315 (1966).
- (487) G. Zweifel and H. Arzoumanian, ibid., 2535 (1966).
- (488) W. J. Burlant and E. S. Gould, J. Am. Chem. Soc., 76, 5775 (1954).

⁽⁴⁷⁵⁾ T. L. Heying, U. S. Patent 3,092,659; Chem. Abstr., 59, 11556 (1963).

ations have been demonstrated in almost every class of compounds which contain a replaceable, acidic hydrogen. The position of metalation has been generally established as occurring at the most acidic hydrogen in the compound, and *ortho*, or α , to a heteroatom, if one is present. Recent developments with the organolithium-amine complexes show that much interesting synthetic chemistry is still to be explored through the use of these relatively new compounds.

The present trend in organolithium research is concerned with mechanism, kinetic, and structural studies. These three previously neglected areas in organolithium chemistry are badly in need of much more intensive study. This work has been hampered in the past by the difficulties encountered in handling these very reactive materials. However, as more of these mechanical problems are solved, many interesting studies should be conducted in these areas.

VII. Glossary and Tables

BuLi	<i>n</i> -butyllithium
EGDE	ethylene glycol dimethyl ether
Ether	diethyl ether
GDME	glycol dimethyl ether
<i>i</i> -PrLi	isopropyllithium
MeLi	methyllithium
PhLi	phenyllithium
THF	tetrahydrofuran
THP	tetrahydropyran
Cables III	VI which fallow aire a summer

Tables III-VI which follow give a summary of new organolithium compounds, relative activity of organolithium compounds, color of some organolithium compounds, and metalations by organolithium compounds, respectively.

New compound	Method of preparation [®]	Final state	7 vield	Ref
CE-CEL		Ethyl ether	61 ^b	
	A	Bentane	51 ^b	c
CHCHI :	A .	Ethyl other	50 75	с
	A	Ethyl ether Solid	30-73	a, e
	A	Solid	66	e
	C A	Solid Etherlather	55	J
	A	Ethyl ether	00	J
	C	Solid	90	Ĵ
	В	Etnyl etner	55	g
$CH_2 = CHCH_2L_1$	D	THF	63 T oh	h
	A	Ethyl ether	70°	<i>i</i> , <i>j</i>
	A	Solid	79	<i>i</i> , <i>j</i>
trans-CH ₃ CH==CHLi	A	Ethyl ether	61°	212
cis-CH ₃ CH=CHLi	Α	Ethyl ether	49°	212
CH₂==C(CH₃)Li	Α	Ethyl ether	14°	212
CH ₂ =C(CH ₃)CH ₂ Li	Α	Ethyl ether	53°	i, j
CH ₂ —CHLi	Α	Pentane	79°	k
CH ₂	Α	Solid	66 ⁵	k
trans-PhCH=CHLi	Α	Ethyl ether	86°	I
CH₃Li	В	Solid		77. m
<i>p</i> -Tolyllithium	Α	Solid	7282	n
o-Tolyllithium	Α	Solid	62	n
<i>m</i> -Tolyllithium	Α	Solid	48	n
1-Naphthyllithium	Α	Solid	56	n
PhCH ₂ Li	Α	Solid	-	0
Fluorenyllithium	Е	Solid	100	D
PhCH=CHLi	Е	Solid		Ď
C ₂ H ₅ Li	В	Benzene	70-85	<i>a</i> . <i>r</i>
PhLi	Ē	Hydrocarbon	92 ^b	41
	Ē	Hydrocarbon	93	41.42
PhCH ₂ Li	Ē	Hydrocarbon	100	41 4
p-Yylyllithium		Solid	75	

Table III Summary of Some New Organolithium Compounds

^a A, transmetalation; B, lithium-metal exchange; C, transmetalation by lithium metal; D, ether cleavage; E, metalation. ^b Yield based on derivative formation. ^o D. Seyferth, D. E. Welch, and G. Raab, J. Am. Chem. Soc., 84, 4266 (1962). ^d D. Seyferth and M. A. Weiner, Chem. Ind. (London), 402 (1959). ^e D. Seyferth and M. A. Weiner, J. Am. Chem. Soc., 83, 3583 (1961). ^f E. C. Juenge and D. Seyferth, J. Org. Chem., 26, 563 (1961). ^g R. West and W. H. Glaze, *ibid.*, 26, 2096 (1961). ^h J. J. Eisch and A. M. Jacobs, *ibid.*, 28, 2145 (1963). ⁱ D. Seyferth and M. A. Weiner, *ibid.*, 24, 1395 (1959). ^j D. Seyferth and M. A. Weiner, *ibid.*, 26, 4797 (1961). ^k D. Seyferth and H. M. Cohen, Inorg. Chem., 2, 625 (1963). ⁱ D. Seyferth, L. G. Vaughan, and R. Suzuki, J. Organometal. Chem., 1, 437 (1964). ^m T. V. Talalaeva and K. A. Kocheshkov, J. Gen. Chem. USSR, 23, 392 (1953); Chem. Abstr., 48, 3245 (1954). ⁿ T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 126 (1953); Chem. Abstr., 48, 3285 (1954). ^o T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 290 (1953); Chem. Abstr., 48, 6389 (1954). ^p T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 392 (1953); Chem. Abstr., 48, 6389 (1954). ^p T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 392 (1953); Chem. Abstr., 48, 6389 (1954). ^g T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Cid. Khim. Nauk, 392 (1953); Chem. Abstr., 48, 6389 (1954). ^g T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Cid. Khim. Nauk, 392 (1953); Chem. Abstr., 48, 6389 (1954). ^g T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Cid. Khim. Nauk, 392 (1953); Chem. Abstr., 61, 5675 (1964). ^r T. V. Talalaeva, A. N. Rodionov, and K. A. Kocheshkov, Proc. Acad. Sci. USSR, Chem. Sect., 152, 703 (1963).

Table IV

Relative Activity of Organolithium Compounds

				Ref	
	A. In competitive	reactions toward the	e same substrate		<u></u>
	$Ph_{3}SiLi > Ph_{3}SiLi > Ph_$	sGeLi > Ph₃SnLi >	> Ph₃PbLi	16	
	B. Order of reactiv	B. Order of reactivity based on the ability to initiate polymerization			
	Bu > benzyl	Bu > benzyl > allyl > vinyl > phenyl			
	C. Half-lives in die	thyl ether at room	temperature		
	Butyllithium,	153 hr		140	
	Cyclopropylli	thium, 138 hr			
	Ethyllithium,	54 hr			
	Propyllithium	, 30 hr			
1. A.	Cyclohexyllit	nium, 0.5 hr			
	D. Decomposition	of butyllithium in v	arious solvents	135	
	THF, 2 hr				
	$Et_2O-THF, 2$	4 hr			
	Et ₂ O–THP, 1	week		* 111.	
	E. Relative stability	y of organolithiums	vs. their metalatin	g ability	
			Metalating		
	Stability,ª		ability, ^b		
	%/hr	RLi	%		
	-0.44	PhCH₂Li	27	С	
	-1.41	MeLi	29.2		
	-2.14	PhCH(CH₃)Li	38.8		
	-3.3	PhLi	55.3		

^a Stability measured as the rate of disappearance per hour. ^b Metalating ability toward dibenzofuran. ^c H. Gilman and H. A. McNinch, J. Org. Chem., 27, 1889 (1962).

Table V

Color of Some Organolithium Compounds

Parent compound	Metalating agent	Solvent	Metalated compound	Color	Ref
Chloroform	BuLi	THF	Trichloromethyllithium	Purple-green	186
Carbon tetrachloride	BuLi	THF	Trichloromethyllithium	Pale pink	186
Tris(trifluorovinyl)phenyltin	PhLi	Ether	Perfluorovinyllithium	Brown	a
Tetravinyltin	BuLi	Hexane THF	Vinyllithium	Light yellow	216
Commercial preparation		Benzene THF	Ethyllithium	Pale straw	216
Propyne	4BuLi	Hexane	Tetralithiopropyne	Red-brown	264
Allyl phenyl ether	Li metal	THF	Allyllithium	Red	Ь
Tetraallyltin	BuLi	Hexane THF	Allyllithium	Yellow	216
Pyrimidine	BuLi		Pyrimidinyllithium	Orange	с
Butyne	BuLi	Hexane	Butynyllithium	Yellow	265
Butyne	2BuLi	Hexane	3-Methylpropynylenedilithium	Yellow	265
Butyne	3BuLi	Hexane	3-Methylpropynylenedilithium- BuLi adduct	Orange	265
Commercial preparation		Hexane THF	<i>n</i> -Butyllithium	Pale straw	216
Commercial preparation		Heptane THF	sec-Butyllithium	Yellow	216
Commercial preparation	3BuLi	Hexane THF	<i>t</i> -Butyllithium	Orange-yellow	216
Commercial preparation		Ether THF	Methallyllithium	Green-yellow	216
1-Methylpyrazole	BuLi	Ether	1-Methyl-5-lithiopyrazole	Yellow	356
2-Methoxythiophene	PhLi	Ether	2-Methoxy-5-lithiothiophene	Yellow	d
2-Methoxythiophene	PhLi	Ether	2-Methoxy-5-lithiothiophene	Green-yellow	320
2-Methylthiophene	BuLi	Ether	5-Methyl-2-thienyllithium	Green	е
Hexachlorobenzene	BuLi	THF	Pentachlorophenyllithium	Light orange- brown	138
Hexachlorobenzene	BuLi	Ether	Pentachlorophenyllithium	Light yellow	138
Bromobenzene	Li metal	THF	Phenyllithium	Deep red	133
Bromobenzene	Li metal	GDME	Phenyllithium	Deep green	407
Fluorobenzene	Li metal	THF	Phenyllithium	Red	f
Commercial preparation		Ether	Phenyllithium	Pink-yellow	216
o-Nitrobromobenzene	PhLi	THF	o-Nitrophenyllithium	Dark red	189
o-Phenylenemercury	Li metal	Ether	o-Dilithiobenzene	Deep red	8
5-Methylpyridotetrazole	BuLi	Ether	5- α -Lithiomethylpyridotetrazole	Deep purple	360
2-Methylpyridine	PhLi	Ether	2-Pyridylmethyllithium	Orange-brown	h
2-Methylpyridine	PhLi	Ether	2-Pyridylmethyllithium	Dark red	347

Parent compound	Metalating agent	Solvent	Metalated compound	Color	Ref
2,4-Dichlorobenzyl chloride	BuLi	THF	2,4-Dichloro-α-chlorobenzyl-	Deep red-	95
a Chlorobanzul ablarida	D.	THE	iithium	purple	05
Pengal chlorida		$\frac{1}{100}$	o-Chloro-α-chlorobenzyllithium	Pale rose	95
Benzal chloride		$THF(-100^{\circ})$	α, α -Dichlorobenzyllithium	Lavenger Deen red	180
2 (1 Propunyl) thiophene		$I \Pi \Gamma (-00^{\circ})$	α, α -Dichlorobenzyllitinum	Deep red	180
2-(1-r10pynyi)(mophene	Bull	Emer	phene	Red	W
Benzyl chloride	Li metal	Dioxane	Benzyllithium	Lemon yellow	38
Toluene	DABCO-BuLi	Hexane	Benzyllithium	Yellow	50
Tribenzyltin chloride	PhLi	Ether	Benzyllithium	Yellow	216
Triphenylbenzyltin	PhLi	Ether	Benzyllithium	Bright yellow	i
Tribenzyltin chloride	MeLi	Ether	Benzyllithium	Bright yellow	40
Methylphenyl sulfide	DABCO-BuLi	THF	Phenylthiomethyllithium	Pale yellow	330
Lutidine	PhLi	Ether	Lutidinyllithium	Orange-red	350
Bis(α -methylbenzyl) ether	Li metal	THF	α -Methylbenzyllithium	Cherry red	36
α-Methylbenzyltriphenyltin	PhLi	Ether	α -Methylbenzyllithium	Brown-yellow	216
o-Methylbenzyl chloride	BuLi	THF	o-Methyl-α-chlorobenzyllithium	Pale yellow- orange	185
p-Methylbenzyl chloride	BuLi	THF	p -Methyl- α -chlorobenzyllithium	Pale orange	185
N-Methylbenzamide	BuLi	THF	o-Lithio-N-methylbenzamide	Dark red	378
2-Methyl-2-(2-thienyl)-1,3- dioxolane	BuLi	Ether	2-Methyl-2-(2-thienyl-5-lithio)- 1,3-dioxolane	Deep brown	302
trans-β-Styryltrimethyltin	MeLi		<i>trans</i> - β -Styryllithium	Red	498
Styrene	BuLi	Ether	Styryllithium	Deep red	273
1-Methylbenzimidazole	BuLi	Ether	1-Methyl-2-lithiobenzimidazole	Red liquid, green-yellow solid	359
Phenylacetonitrile	BuLi	THF	α -Lithiophenylacetonitrile	Yellow	369
Indene	BuLi	Ether	1-Indenyllithium	Rust	276
Indene	Ph₃SiLi	THF	1-Indenyllithium	Brown-yellow	271
1-Phenylpyrazole	BuLi	Ether	5-Lithio-1-phenylpyrazole	Dark red	356
1-Phenylpyrazole	2BuLi	Ether	1-(o-Lithiophenyl)-5-lithio- pyrazole	Bright yellow	356
N-Methylindole	BuLi	Ether	1-Methyl-2-lithioindole	Green	355
Allylbenzene	BuLi	Ether	1-Phenylallyllithium	Green-red-	j
Allylbenzene	BuLi	THF	1-Phenylallyllithium	Red	216
N-Methyl-o-toluamide	BuLi	THF	o-Lithiomethyl-N-methylbenz-	Dark red	382
Benzyldimethylamine	PhLi	Ether	<i>a</i> -Lithiobenzyldimethylamine	Brown	373
Benzyldimethylamine	BuNa	Octane	a-Sodiobenzyldimethylamine	Orange-red	373
Benzyldimethylamine	PhNa	Octane	o-Sodiobenzyldimethylamine	Red suspen-	373
Benzyldimethylamine	PhK	Hentane	a-Potassiohenzyldimethylamine	Light red	373
1-Eluoronaphthalene	Limetal	THE	1-Nanhthyllithium	Green	575 F
Ferrocene	BuLi	Ether	Ferrocenvllithium	Orange	j k
Ferrocenvlmethyl methyl ether	BuLi	THF	Ferrocenylmethyllithium	Dark red	440
1-Methoxynaphthalene-8-d	BuLi	Ether	Lithio-1-methoxynaphthalene-	Red-orange	293
N,N-Dimethyl-α-phenylpropyl- amine	BuLi	Ether	o-Lithio-N,N-dimethyl- γ -phe- nylpropylamine	Red	379
Diazocyclopentadiene	PhLi	Ether	Phenylazocyclopentadienyl- lithium	Scarlet	448
Dibenzofuran	Li metal	Dioxane	Lithium 2-(2-lithiophenyl)phen- oxide	Brick red	288
Dibenzofuran	Li metal	THF	Lithium 2-(2-lithiophenyl)phen- oxide	Blue-green to brown	1
Dibenzothiophene 5-oxide	BuLi	Ether	4-Lithiodibenzothiophene 5- oxide	Dark orange	323
Thianthrene 5-oxide	BuLi	Ether	4,6-Dilithiothianthrene 5-oxide	Orange	328
Diphenyl sulfone	BuLi	Ether	o-Lithiodiphenyl sulfone	Yellow-orange	324
				Yellow	341
Diphenyl sulfone	2BuLi	Ether	o,o'-Dilithiodiphenyl sulfone	Orange-red	324
Phenoxathiin 10-dioxide	BuLi	Ether	1,9-Dilithiophenoxathiin 10-dioxide	Yellow-orange	384

Parent compound	Metalating agent	Solvent	Metalated compound	Color	Rof
Dihanzathianhana 5 diavida	 Dul :	Ethar	4.6 Dilithiodibenzothionhone	Doon red	224
Dibenzotniopnene 5-dioxide	BuLi	Ether	5-dioxide	Deep red	324
Diphenyl ether	BuLi	THF	2,2'-Dilithiodiphenyl ether	Dark green	158
Diphenyl phosphine	BuLi	THF	Diphenylphosphenyllithium	Orange-red	143
N,N-Dimethyl(β-phenyliso-	BuLi	Ether	o-Lithio-N,N-dimethyl(β -phe-	Red	379
butyl)amine			nylisobutyl)amine		
Fluorene	PhLi	Ether	9-Fluorenyllithium	Orange	m
Fluorene	EtLi	Benzene	9-Fluorenyllithium	Orange	n
Fluorene	BuLi	Benzene	9-Fluorenyllithium	Orange	253
Fluorene	BuLi	Hexane	9-Fluorenyllithium	Yellow	0
Fluorene Fluorene	BuLi Triphenyllead-	Hexane-THF THF	9-Fluorenyllithium 9-Fluorenyllithium	Orange-brown Brown	274 271
Fluorene	lithium Triphenyltin-	тиг	9-Eluorenvilithium	Pad	271
Thuorene	lithium		9-1 luorenyminiam	Reu	2/1
N-Methylcarbazole	BuLi	Ether	1-Lithio-N-methylcarbazole	Dark red	345
Xanthene	Ph ₃ -SiLi	THF	9-Xanthyllithium	Dark red	271
Diphenylmethane	Ph ₂ -Li adduct	THF	Diphenylmethyllithium	Red	P
Diphenylmethane	Ph₃SiLi	THF	Diphenylmethyllithium	Red	271
Triphenylphosphine oxide	MeLi	Ether	α-Lithiomethyldiphenylphos- phine oxide	Deep red	461
Triphenylphosphine oxide	MeLi	Ether	α-Lithiomethyldiphenylphos- phine oxide	Orange-red	460
Triphenylphosphine sulfide	MeLi		α -Lithiomethyldiphenylphos-	Red	462
Triphenylphosphine sulfide	EtLi		α-Lithioethyldiphenylphosphine sulfide	Red	462
2-Bromo-1,1-diphenylethylene	BuLi	Ether	1,1-Diphenyl-2-bromo-2-lithio- ethylene	Yellow	q
10-Methylacridan	BuLi	Ether	9-Lithio-10-methylacridan	Bright red	r
10-Ethylphenothiazine	Ph₃SiLi	THF	4-Lithio-10-ethylphenothiazine	Light green	271
Phenyl (3-chloro-4-N,N-di- methylaminophenyl) sulfone	BuLi	Ether	Phenyl (2-lithio-3-chloro-4- N,N-dimethylaminophenyl) sulfone	Yellow	342
α -Methyl- α' -(phenethyl)-pyridine	PhLi	Ether	2-Phenyl-1-(5-methyl-2-pyridyl)- ethyllithium	Orange-red	350
N-Phenylindole	BuLi	Ether	1-(o-Lithiophenyl)-2-lithioindole	Orange	355
2.2-Diphenyl-1-chloropropane	Li meta	Ether	2.2-Diphenyl-1-lithiopropane	Clear red	5
Pyrene	BuLi	Ether	Pyrenyllithium	Deep red	280
12H-Benzo[a]phenothiazine	BuLi	Ether	1-Lithio-12H-benzo[a]pheno-	Bright red	393
12H-Benzo[b]phenothiazine	BuLi	Ether	11-Lithio-12H-benzo[b]pheno- thiazine	Deep orange	395
Diphenylacetylene	EtLi	Ether	1-Phenyl-2-(o-lithiophenyl)-1-	Green to bright	268
1.1 Dishanalaéhailana	Allellithium	THE	1 1 Dinkonyl 2 hytonyllithium	Deep and	216
1,1-Diphenyletnylene	Duti	III Ether	1. Phonyl 2 (a lithionhonyl) 1	Deep reu Bod	210
Diphenylacetylene	BULI	Ether	lithio-1-hexene	Rea	208
1,1-Diphenylethylene	BuLi	THF	1,1-Diphenyl- <i>n</i> -hexyllithium	Deep red	216
1,1-Diphenylethylene	BuLi		1,1-Diphenyl- <i>n</i> -hexyllithium	Deep red	61
1,1-Diphenylethylene	BuLi	Benzene	1,1-Diphenyl- <i>n</i> -hexyllithium	Cherry red	250, 251
Triphenylgermane	PhLi	Ether	Triphenylgermyllithium	Yellow	400
Triphenylgermane	BuLi	THF	Triphenylgermyllithium	Pale green	401
9-Phenylfluorene	BuLi	Ether	9-Phenyl-9-fluorenyllithium	Orange	298
Tritylmethyl ether	BuLi	Ether	9-Phenyl-9-fluorenyllithium	Scarlet	298
Triphenylmethane	n-PrLi	Ether	Triphenylmethyllithium	Red	205
Triphenylmethane	BuLi	Ether	Triphenylmethyllithium	Red	405
Triphenylmethane	BuLi	Hexane	Triphenylmethyllithium	Red	274
Triphenylmethane	Ph ₂ -Li adduct	THF	Triphenylmethyllithium	Deep red	t
Triphenylmethyl chloride	Li metal	THF	Triphenylmethyllithium	Brilliant red	216
14H-Dibenzo[a,c]phenothiazine	BuLi	Hexane	1-Lithio-14H-dibenzo[a,c]- phenothiazine	Red	394
14H-Dibenzo[a,h]phenothiazine	BuLi	Hexane	1-Lithio-14H-dibenzo[a,h]-	Dark red	394
7H-Dibenzo[c,h]phenothiazine	BuLi	Hexane	6-Lithio-7H-dibenzo[c,h]pheno- thiazine	Red	394

.

	Table V (Continued)										
Parent compound	Metalating agent	Solvent	Metalated compound	Color	Ref						
3-(Triphenylsilyl)-2-chloro- propene	Ph₃SiLi	THF	3-Lithio-3-(triphenylsilyl)-2- chloropropene	Purple to light orange	238						
Cinnamylidenefluorene	PhLi	Ether	9-Cinnamylidene-9-fluorenyl- lithium	Dark red	и						
Diphenylferrocenylcarbinol	BuLi	Ether	2-Lithioferrocenyldiphenyl- carbinol	Dark yellow	303						
Triphenylmethylcyclopenta- diene	PhLi	Ether	Triphenylmethylcyclopentadi- enyllithium	Yellow	v						
Tetraphenylphosphonium bromide	MeLi	THF ether	(o-Lithiophenyl)triphenylphos- phonium bromide	Brown-deep red	466						

^a D. Seyferth, D. E. Welch, and G. Raab, J. Am. Chem. Soc., 84, 4266 (1962). ^b J. J Eisch and A. M. Jacobs, J Org. Chem., 28, 2145 (1963). ° T. L. V. Ulbricht, Tetrahedron, 6, 225 (1959) d W. R. Biggerstaff and K. L. Stevens, J. Org. Chem., 28, 733 (1963). e R. D. Schuetz, D. D. Taft, J. P. O'Brien, J. L. Shea, and H. M. Mork, ibid., 28, 1420 (1963). / H. Gilman and T. S. Soddy, ibid., 22, 1121 (1957). . H. J. S. Winkler and G. Wittig, *ibid.*, 28, 1733 (1963). ^h N. J. Leonard and A. S. Hay, J. Am. Chem. Soc., 78, 1984 (1956). ⁱ H. Gilman and S. D. Rosenberg, J. Org. Chem., 24, 2063 (1959). ⁱ H. F. Herbrandson and D. S. Mooney, J. Am. Chem. Soc., 79, 5809 (1957). ^k H. Watanabe, I. Motoyama, and K. Hata, Bull. Chem. Soc. Japan, 39, 784 (1966). ¹ H. Gilman and J. J. Dietrich, J. Org. Chem., 22, 851 (1957). ^m J. A. Gautier, M. Miocque, and H. Moskowitz, J. Organometal. Chem., 1, 212 (1964). * T. V. Talalaeva and K. A. Kocheshkov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 392 (1953); Chem. Abstr., 48, 6389 (1954). * W. S. Murphey and C. R. Hauser, J. Org. Chem., 31, 85 (1966). * J. J. Eisch and W. C. Kaska, ibid., 27, 3745 (1962). 4 D. Y. Curtin and E. W. Flynn, J. Am. Chem. Soc., 81, 4714 (1959). 4 H. Gilman and G. Lichtenwalter, J. Org. Chem., 23, 1586 (1958). * H. E. Zimmerman and A. Zweig, J. Am. Chem. Soc., 83, 1196 (1961). * J. J. Eisch and W. C. Kaska, Chem. Ind. (London), 470 (1961). " E. D. Bergmann and Z. Pelchowicz, Bull. Soc. Chim. France, 809 (1953). " W. F. Little and R. C. Koestler, J. Org. Chem., 26, 3247 (1961). * L. Skatteboel, Acta Chem. Scand., 13, 1460 (1959).

		Table VI	
Metalations	by	Organolithium	Compounds

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
CHC13	Chloroform	BuLi	THF Ether	Benzophenone	Trichloromethyldiphenylcarbinol	84	195
		BuLi	THF Hexane	Carbon dioxide	Trichloroacetic acid	50	186
		BuLi	THF Ether Pet. ether	Mercuric chloride	Bis(trichloromethyl)mercury	91–96	195
CH.Cl.	Methylene	MeLi	Ether	Benzene	Methyltropilidene	30	241
	chloride	BuLi	THF Ether Pet. ether	Benzophenone	Dichloromethyldiphenylcarbinol	80	202
		BuLi		trans-2-butene	1-Chloro-2,3- <i>trans</i> -dimethyl- cyclopropane	40	237
		MeLi	Ether	t-Butylbenzene	Methyl-t-butyltropilidene	25	241
		BuLi	THF Hexane	Carbon dioxide	Dichloroacetic acid	60	186
		MeLi	Ether	Cumene	Methylisopropyltropilidene	20	241
		BuLi		Cyclohexene	7-Chlorobicyclo[4.1.0]heptane	31	237
		BuLi	THF Ether Pet. ether	2,2'-Dichloro- benzophenone	Dichloromethylbis(2-chloro- phenyl)carbinol		202
		BuLi		2,3-Dimethyl- 2-butene	1-Chloro-2,2,3,3-tetramethyl- cyclopropane	67	237
		BuLi	Hexane THF	Mercuric chloride	Bis(dichloromethyl)mercury	82-97	194, 198 202
		MeLi	Ether	Toluene	Dimethyltropilidene	40	241
		MeLi	Ether	p-Xylene	Trimethyltropilidene	10	241
CH ₂ N ₂	Diazometh-	MeLi	Ether	Benzonitrile	3- (or 5-) Phenyl-1,2,4-triazole	42	364
	ane	MeLi	Ether	Benzoyl bromide	2-Phenyl-1,3,4-oxadiazole	35	364
		MeLi	Ether	Fluorenone	9-Fluoreneimine	41	364
		MeLi	Ether		Diazomethyllithium	50	363
C,HCl,	Trichloro- ethylene	BuLi	THF Ether Pet. ether	Bromine	Bromotrichloroethylene	36	193
		BuLi	THF Ether	Capraldehyde	3-Hydroxy-1-chloro-1-octyne		416
		BuLi	THF Ether Pet. ether	Carbon dioxide	Trichloroacrylic acid	81	192, 193

	Compound metalated	RLi	Solvent	Reactant	Final product	% vield	Ref
<u></u>		PhIi	Fther	Cuclobevanone	1. Hudrovyovolohevylethynyl	82	
C1H1	Acetylene	PhLi	THF	Triphenylchloro-	chloride Bis(triphenylsilyl)acetylene	02	254
C ₂ H ₂ Cl ₂	trans-1,2-	BuLi	THF	silane Bromine	trans-1,2-Dichlorobromoethylene	26	193
	Dichloro- ethylene		Ether Pet. ether				
		BuLi	THF Ether Pet. ether	Carbon dioxide	trans-2,3-Dichloroacrylic acid	99	192, 193
C₂H₃Cl	Vinyl chloride	BuLi	THF Ether Pet. ether	Carbon dioxide	2-Chloroacrylic acid	99 –100	192, 193
C ₂ H ₃ F ₃ O ₂ S	Methyl tri- fluoro- methyl sulfone	BuLi	Ether	Carbon dioxide	Trifluoromethylsulfonylacetic acid	51	333
C ₂ H ₆ O ₂ S	Dimethyl sulfone	BuLi	Benzene	Benzaldehyde	(β-Phenyl-β-hydroxyethyl) methyl sulfone	85	331
		BuLi	Benzene	Benzophenone	(β,β-Diphenyl-β-hydroxyethyl) methyl sulfone	46	331
C ₂ H ₁₂ B ₁₀	Carborane	BuLi BuLi	Ether Ether	Acetaldehyde Acetic acid	 1,2-Bis(α-hydroxyethyl)carborane 1,2-Di(1-hydroxy-1-ethyl)- carborane 	31	470 481
		BuLi	Ether	1,2-Bis(chloro- dimethylsilyl)- carborane	$CH_{3} CH_{3} $	23	479
		BuLi	Ether	1,2-Bis(chloro- phenylphos- phino)car- borane	Dimeric phenylphospha(III)- carborane	20	469
		BuLi	Ether	1,2-Bis(trichloro- silyl)carborane	$(Cl_2Si-CC-)_2$	52	479
		PhI	Ether	3-Bromonronene	Dignig 1-Allylcarborane	70	470
		BuLi	Ether	<i>n</i> -Butyl bromide	<i>n</i> -Butylcarborane	69	470
		MeLi	Ether	Carbon dioxide	Carboranecarboxylic acid	•	468
		BuLi		Carbon dioxide	Carboranecarboxylic acid		471
		BuLi	THF Heptane	Carbon dioxide	1,2-Carboranedicarboxylic acid	24	472
		BuLi	Ether	Carbon dioxide	1,2-Carboranedicarboxylic acid	87	470
		2 R <i>L</i> i	Benzene Ether	Dibutyltin dichloride	Dibutylcarboranylenetin	66	473
		BuLi	Ether	Dichlorodimethyl- silane	1,2-Bis(chlorodimethylsilyl)- carborane	88	479
		MeLi	Ether	Dichlorodimethyl- silane	Dimethylchlorosilyicarborane		478
		MeLi	Ether	Dichlorodimethyl- silane	Dimethyldicarboranylsilane		478
		BuLi	Ether	silane	Dimetnyidicarboran-1-yisilane		470
		BuLi	Ether	methylsilane	ylene)carborane	23	470
		BuLi	Ether	silane	carborane	59	4/9
		BuLi	Renzene	phosphine Ethylene oxide	carborane	48	474
		Buli	Fther	Ethylene ovide	1 2-Bis(B-hydroxyethyl)carborane	-10	470
		Phi	Ether	Ethylene ovide	1 2-Bis(hydroxyethyl)carborane	35	472
		BuLi	Ether	Iodine	1-Iodocarborane	64	472
		BuLi	Ether	Mercuric chloride	Dicarboranylmercury	53	473

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		RLi	Ether	Methylmercuric	Methylcarboranylmercury	51	473
		BuLi	Ether	Methyltrichloro-	1,2-Bis(dichloromethylsilyl)-	70	479
		BuLi	Ether	Phenyldichloro-	1,2-Bis(chlorophenylphosphino)- carborane	58	469
		BuLi	Ether	Phosphorus tri- chloride	Dimeric chlorophospha(III)- carborane	44	469
		BuLi	Benzene Ether	Propylene oxide	1-(Carboranyl)-2-propanol	50	474
		2BuLi	Benzene Ether	Propylene oxide	1,2-Bis(β-hydroxypropyl)- carborane	80	474
		BuLi	Ether	Tetrachlorosilane	1,2-Bis(trichlorosilyl)carborane	60	479
		BuLi	Ether	Trimethylchloro- methylsilane	Trimethyl(carboran-1-ylmethyl)- silane		470, 478
		MeLi	Ether	Trimethylchloro- silane	Trimethylsilylcarborane		478
		BuLi	Ether	Trimethylchloro- silane	1-Trimethylsilylcarborane		470
		MeLi	Ether	Triphenylchloro- silane	Triphenylsilylcarborane		478
		BuLi	Ether	Triphenylchloro- silane	1-Triphenylsilylcarborane		470
		2 RL i	Benzene Ether	Tri- <i>n</i> -propyltin chloride	Carboranylenebis(tri-n-propyltin)	30	473
		RLi	Ether	Tri- <i>n</i> -propyltin chloride	Tri-n-propylcarboranyltin	35	473
$C_2H_{12}B_{10}$	Neocarborane	BuLi	Ether	Carbon dioxide	C,C'-Neocarboranedicarboxylic acid	78	484
		BuLi BuLi	Ether Benzene	Methyl iodide Paraformaldehyde	C-Methylneocarborane C,C'-Bis(hydroxymethyl)neo- carborane	39 24	484 484
C ₃ H ₂ BrNS	4-Bromoiso- thiazole	BuLi	THF	Carbon dioxide	4-Bromo-5-isothiazolecarboxylic acid	70	388
		BuLi	THF	Dimethylform- amide	4-Bromo-5-formylisothiazole	73	388
C ₁ H ₂ CINS	4-Chloroiso- thiazole	BuLi	THF	Carbon dioxide	4-Chloro-5-isothiazolecarboxylic acid	68	388
		BuLi	THF	Dimethylform- amide	4-Chloro-5-formylisothiazole	65	388
C ₁ H ₁ INS	4-Iodoiso- thiazole	BuLi	THF	Dimethylform- amide	4-Iodo-5-formylisothiazole	33	388
C;H;NS	Isothiazole	BuLi	THF	Bromine	5-Bromoisothiazole	34	388
		BuLi	THF	Carbon dioxide	Isothiazole-5-carboxylic acid	48	388
		BuLi	THF	Dimethylform- amide	5-Formylisothiazole	75	388
		BuLi	THF	Methyl iodide	5-Methylisothiazole	40	388
C ₂ H ₂ NS	Thiazole	BuLi	Ether	Acetaldehyde	2-(1-Hydroxyethyl)thiazole	30	391
		BuLi	Ether	Benzophenone	Diphenyl-2-thiazolylcarbinol	22	391
		BuLi	Ether	Butyraldehyde	2-(1-Hydroxybutyl)thiazole	9 0	391
		PhLi	Ether	Carbon dioxide	2-Thiazolecarboxylic acid	40	389
		BuLi	Ether	Ethylene oxide	2-(2-Hydroxyethyl)thiazole	30	391
		BuLi	Ether	Heptaldehyde	2-(1-Hydroxyheptyl)thiazole	9 0	391
		BuLi	Ether	Isobutyraldehyde	2-(1-Hydroxy-2-methylpropyl)- thiazole	9 0	391
	_	BuLi	Ether	Propionaldehyde	2-(1-Hydroxypropyl)thiazole	50	391
C₂H₄	Propyne	BuLi	Hexane	Trimethylchloro- silane	1,3,3-Tris(trimethylsilyl)propyne + 1,1,3,3-tetra(trimethyl- silvl)allane	50 25	264
		Met i	Ethor	Promoteifluoro	1 Dromo 1 2 differences 1 cm 2	54	422
		Meli	THF	ethylene Chlorotrifluoro	yne	00 72	423
		IVICE1	THE	ethylene	vne	13	443
		MeLi	Ether THF	1,1-Dichlorodi- fluoroethylene	1,1-Dichloro-2-fluoropent-1-en-3- yne	51	423

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
<u></u>	<u>, </u>	MeLi	Ether	Hexafluoropro-	1,1,1,2,3-Pentafluorohex-2-en-4-	17	423
		MeLi	Ether THF	Tetrafluoroethyl- ene	4,5-Difluoroocta-2,6-diyn-4-ene	35	423
		MeLi	Ether THF	1,1,2-Trifluoro- 1,3-butadiene	3,4-Difluorohepta-1,3-dien-5-yne	64	423
C ₂ H ₄ N ₂	Pyrazole	2BuLi	Ether	Carbon dioxide	3-Pyrazolecarboxylic acid	9	a
	Chlana	2PhLi	Ether	Carbon dioxide	3-Pyrazolecarboxylic acid	7	a
CarlaCiOSi	methyl- dimethyl-	MeLi	Ether	chloride	$(CH_2CI)(CH_3)_2SIOGe(CH_3)_2$ (CH_2CI)	/4	D
	silanol	MeLi	Ether	Chloromethyl- germyl dichlo-	(CH ₂ Cl)(CH ₃) ₂ SiOGeOSi(CH ₃) ₂	68	Ь
		MeLi	Ether	Trimethylgermyl	(CH ₂ Cl)(CH ₃) ₂ SiOGeMe ₃	80	b
$C_{3}H_{12}B_{10}O_{2}$	Carborane- carboxylic	BuLi		Carbon dioxide	Carboranedicarboxylic acid		471
C ₂ H ₁₄ B ₁₀	acid 1-Methyl-	BuLi		Benzaldehyde	1-(Methylcarboranyl)benzyl	70	с
	curborane	BuLi	Ether	Carbon dioxide	1-Methyl-2-carboranylcarboxylic acid	20	484, 471
		BuLi	Benzene Ether	Epichlorohydrin	1,3-Bis(methylcarboranyl)-2-pro- panol	37	
					1,2-Epoxy-3-methylcarboranyl- propane	³⁰ ∫	474
		RLi BuLi	Benzene	Ethyl benzoate Ethylene oxide	Methylcarboranylphenylcarbinol 1-(1-Methyl-2-carboranyl)ethanol	72 65– 9 0	483 474
			Ether				
			Ether	Mercuric chloride	Bis(methylcarboranyl)mercury	72	473
		RLI BuLi	Benzene Ether	Propylene oxide	1-Methyl-2-carboranyl)-2- propanol	72	485 474
		BuLi	Benzene Ether	Styrene oxide	2-(1-Methyl-2-carboranyl)-1- phenylethanol	62	474
$C_{a}H_{14}B_{10}$	C-Methylneo- carborane	BuLi	Ether	Carbon dioxide	C-Methyl-C'-neocarboranyl- carboxylic acid	19	484
C ₄ H ₂ Br ₂ S	2,4-Dibromo- thiophene	BuLi	Ether	Carbon dioxide	3,5-Dibromo-2-carboxythiophene	36	d
$C_4H_2Br_2S$	3,4-Dibromo- thiophene	BuLi	Ether	Carbon dioxide	3,4-Dibromo-2-carboxythiophene	34	d
C ₄ H ₂ BrS	3-Bromothio- phene	BuLi	Ether	Carbon dioxide	3-Thiophenecarboxylic acid + 2,3-dicarboxythiophene		225
		BuLi	Ether	Carbon dioxide	3-Bromo-2-thiophenecarboxylic acid	36	231, d
		PhLi	Ether	Carbon dioxide	3-Bromo-2-thiophenecarboxylic acid	72	231
		BuLi	Ether	Deuterium oxide	3-Deuteriothiophene + 2,3- dideuteriothiophene		225
		BuLi	Ether	Tritium oxide	Thiophene-2- t + thiophene-3- t		225
C ₄ H ₃ DS	2-d	BULI	Hexane	Carbon dioxide	2-Carboxytniophene	07	228
C4H3ST	2-t	BuLi 1:1	Ether	Carbon dioxide	2-Thiophenecarboxylic acid	87	227, 228
C ₄ H ₃ ST	Thiophene- 3-t	BuLi 1:1	Ether	Carbon dioxide	2-Thiophenecarboxylic acid	95	227
C4H4BrNS	4-Bromo-3- methyliso- thiazole	BuLi	THF	Benzyl bromide	5-Benzyl-4-oromo-3-methyliso- thiazole + 4-bromo-3-methyl- 5-(1,2-diphenylethyl)isothia- zole	13 10	388
		BuLi	THF	Carbon dioxide	4-Bromo-3-methyl-5-isothiazole- carboxylic acid	56	388
		BuLi	THF	Dimethylform- amide	4-Bromo-5-formyl-3-methyliso- thiazole	51	388

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi	THF	Ethyl halide	4-Bromo-5-ethyl-3-methyliso- thiazole	34	388
		BuLi	THF	Methyl iodide	4-Bromo-3,5-dimethylisothiazole	40	388
		BuLi	THF	n-Propyl halide	4-Bromo-3-methyl-5-n-propyl- isothiazole	28	388
C₄H₄ClNS	4-Chloro-3- methyliso-	BuLi	THF	Carbon dioxide	4-Chloro-3-methyl-5-isothiazole- carboxylic acid	75	388
	thiazole	BuLi	THF	Dimethylform- amide	4-Chloro-5-formyl-3-methyliso- thiazole	47	388
C₄H₄INS	4-Iodo-3- methyliso-	BuLi	THF	Carbon dioxide	4-Iodo-3-methyl-5-isothiazole- carboxylic acid	58	388
	thiazole	BuLi	THF	Dimethylform- amide	4-Iodo-5-formyl-3-methyliso- thiazole	68	388
C₄H₄O	Furan	BuLi	Ether	Acetophenone	Methylphenyl-2-furylcarbinol	96	285
		BuLi	Ether	Benzaldehyde	Phenyl-2-furylcarbinol	98	285
		BuLi	Ether	Benzonitrile	2-Benzovlfuran	89	285
		Buli	Ether	Benzonbenone	Diphenyl-2-furylcarbinol	08	285
		DuLi Duli	THE	a Dutul bromido	2 Dutulfuron	70	205
				<i>n</i> -Butyl bronnide	2- <i>n</i> -Butynuran	77	285
		BuLi	Ether	Carbon dioxide	2-Furoic acid	- 77	285
		BuLi	Ether	Cyclohexanone	1-(2-Furyl)cyclohexanol	95	285
		BuLi	Ether	Ethyl acetate	Di(2-furyl)methylcarbinol	94	285
		BuLi	Ether	Ethyl benzoate	Di(2-furyl)phenylcarbinol	44	285
		BuLi	Ether	Isobutyraldehyde	Isopropyl-2-furylcarbinol	93	285
		BuLi	Ether	Methyl ethyl ketone	Methylethyl-2-furylcarbinol	88	285
		BuLi	Ether	Sulfur dioxide	Lithium 2-furansulfinate	55	208
		BuLi	Ether	Sulfur, ethyl iodide	2-(Ethylthio)furan	53	e
		BuLi	Ether	Triphenyltin chloride	Triphenyl-2-furyltin	44	f
CILS	Thiophene	BuLi	Ether	Acetaldehvde	1-(2-Thienyl)ethanol	73	211
- 1 1-	1	Buli	Ether	Benzaldehyde	2-Thienvlohenvlcarbinol	54	211
		Dut:	Ether	Denzal brandide	2 Den sulthianhana	2 4	210
		BuLI	Ether	Belizyi biblilide	2-Benzynniophene	02	519
		BuLi	THF	Bromobenzene	2-Phenylthiophene + 2,5- diphenylthiophene	31 22	319
		BuLi	Ether	<i>n</i> -Butyl bromide	2-n-Butylthiophene	47	319
		BuLi N-Methyl-2- lithiopyr- role	Ether Ether	Butyraldehyde Carbon dioxide	1-(2-Thienyl)butanol Thiophene-2-carboxylic acid	76	211 392
		2,4,6-Tri- phenyl- phenyl- lithium		Carbon dioxide	Thiophene-2-carboxylic acid	46	172
		Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	Thiophene-2-carboxylic acid	43	8
		BuLi	Ether	Cupric chloride	2,2'-Bithienyl	64	314
		BuLi	Ether	3-Cyclohexenyl- carboxaldehyde	2-Thienyl-3-cyclohexenylcarbinol	64	211
		PhLi	Ether	cis-4-Dimethyl- aminocyclo- hexyl 2-thienyl ketone	cis-4-Dimethylaminodi(2-thi- enyl)cyclohexylcarbinol	66	h
		PhLi	Ether	trans-4-Dimethyl- aminocyclo- hexyl 2-thienyl ketone	trans-4-Dimethylaminodi(2-thi- enyl)cyclohexylcarbinol	88	h
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Bis(α -thienyl) ketone		207
		BuLi	Ether	Dimethyl sulfate	2-Methylthiophene	65	319
		BuLi	Ether	Ethyl bromide	2-Ethylthiophene	61	319
		BuLi	Ether	2-Ethylbutyral- dehyde	1-(2-Thienyl)-2-ethyl- 1-butanol	72	211

				Table VI (Continued)			
	Compound metalated	RLi	Solvent	Reactant	Final product	yield	Ref
		PhLi	Ether	cis-Ethyl 4-di- methylamino- cyclohexyl- carboxylate	cis-4-Dimethylaminodi(2-thi- enyl)cyclohexylcarbinol	86	h
		PhLi	Ether	trans-Ethyl 4-di- methylamino- cyclohexyl- carboxylate	trans-4-Dimethylaminodi(2-thi- enyl)cyclohexylcarbinol	68	h
		BuLi	Ether	2-Ethylhexalde- hyde	1-(2-Thienyl)-2-ethyl-1-hexanol	75	211
		BuLi	Ether	<i>n</i> -Hexaldehyde	1-(2-Thienyl)hexanol	63	211
		PhLi	Ether	1-Methyl-4- piperidone	4-(2-Thienyl)-1-methyl-4- hydroxypiperidine	34	i
		BuLi	Ether	n-Octyl bromide	2- <i>n</i> -Octylthiophene	46	319
		BuLi	Ether	Perchloryl fluoride	2-Fluorothiophene	49	j
		BuLi	Ether	Phenyl thiocyanate	2-Thienyl phenyl sulfide	59	313
		BuLi	Ether	Propionaldehyde	1-(2-Thienyl)propanol	68	211
		BuLi	Ether	Sulfur dioxide	Lithium 2-thiophenesulfinate	57	208
		BuLi	Ether	Tritium oxide	2-T-Thiophene		228
C ₄ H ₅ N	Pyrrole	BuLi	Ether	Carbon dioxide	Pyrrole-1-carboxylic acid	34	354
C4H5NS	3-Methyliso- thiazole	BuLi	THE	Carbon dioxide	3-Methylisothiazole-5-carboxylic acid	50	388
		DuLI	THE	amide	2.5. Dimethyliaethiaeala	20	200
C₄H₅NS	4-Methyliso-	BuLi BuLi	THF	Carbon dioxide	4-Methylisothiazole-5-carboxylic	28 40	388 388
	tillazoie	BuLi	THF	Dimethylform- amide	5-Formyl-4-methylisothiazole	55	388
C₄H₅NS	4-Methyl- thiazole	BuLi	Ether	Acetaldehyde	2-(α-Hydroxyethyl)-4-methyl- thiazole	48	39 0
		BuLi	Ether	Butyraldehyde	4-Methyl-2-thiazolylpropyl- carbinol	93	391
		BuLi	Ether	Ethylene oxide	(Hydroxy-2-ethyl)-2-methyl-4- thiazole	42	391
		BuLi	Ether	Methyl iodide	2,4-Dimethylthiazole	26	391
		BuLi	Ether	Propylene oxide	2-(2-Hydroxypropyl)-4-methyl- thiazole	51	391
C₄H₅	1-Butyne	BuLi	Hexane	Carbon dioxide	2-Methylglutaric acid	39	265
		BuLi	Hexane	silane	1,1,3-Tris(trimethylsilyl)-1,2- butadiene + 1,3,3-tris(tri- methylsilyl)-1-butyne		264
C ₄ H ₆ Br ₂	1,1-Dimethyl- 2,2-di- bromo- ethylene	BuLi	THF	Carbon dioxide	2-Bromo-3,3-dimethylacrylic acid	94	188
$C_4H_6Cl_2S$	1,2-Dichloro- ethylthio- ethylene	BuLi	Ether	Acetone	1-Thioethyl-3-methyl-3-hydroxy- butyne	63	416
$C_4H_6N_2$	N-Methyl-	BuLi	Ether	Benzophenone	(2-Imidazolyl)diphenylcarbinol	86	358
	imidazole	BuLi	Ether	Carbon dioxide	1-Methyl-2-imidazolecarboxylic acid + 1-methyl-5-imidazole-	32 1.5	358
		BuL i	Ether	1-Naphthyl iso- cyanate	N-α-Naphthyl-1-methyl-2-imid- azolecarboxamide	66	358
$C_4H_6N_2$	1-Methyl- pyrazole	BuLi	Ether	Benzophenone	Diphenyl(1-methyl-5-pyrazolyl)- carbinol	87	а
		BuLi	Ether	Carbon dioxide	1-Methyl-5-pyrazolecarboxy'ic acid	54-66	а
		PhLi	Ether	Carbon dioxide	1-Methyl-5-pyrazolecarboxylic acid	39	а
		BuLi	Ether	Dimethyl sulfate	1,5-Dimethylpyrazole	75	a
C₄H₀O	Ethoxyacet-	PhLi	Ether	Acetaldehyde	1-Ethoxybut-1-yn-3-ol	42	k ,
	ylene	PhLi	Ether	Benzaldehyde	1-Ethoxy-3-phenylprop-1-yn-3-ol	72	ĸ
		PALI DAT:	Ether	Propionaldabuda	1-Eunoxynon-1-yn-3-ol	50 A7	к l
		FILL	Liner	rropionaidenyde	т-винохурени-т-уп-э-ог	4/	r

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C₄H₀S	Ethylthio-	PhLi	Ether	Carbon dioxide	Ethylthiopropynoic acid (isolated as S-benzylthiuronium salt)	63	I
	ueeryneme	MeLi	Ether	Ethyl chloro- carbonate	Ethyl ethylthiopropynoate	56	I
C ₄ H ₈ S ₂	1,3-Dithiane	BuLi	Hexane	Benzaldehyde	2-(Hydroxyphenylmethyl)-1,3- dithiane	91	343
		BuLi	Hexane	Benzophenone	2-(Dihydroxyphenylmethyl)-1,3- dithiane	80	343
		BuLi	Hexane	β-Bromoacetalde- hyde diethyl acetal	2-(Acetaldehyde diethyl acetal)- 1,3-dithiane	77	343
		BuLi	Hexane	Cyclohexanone	2-(1-Hydroxycyclohexyl)-1,3- dithiane	85	343
		BuLi	Hexane	Cyclopentanone	2-(1-Hydroxycyclopentyl)-1,3- dithiane	70	343
		BuLi	Hexane	1,3-Dibromo- propane	1,3-Di(2-thianyl)propane	66	344
		BuLi	Hexane	1,4-Dibromo- butane	1,4-Di(2-thianyl)butane	84	344
		BuLi	Hexane	Isopropyl iodide	2-Isopropyl-1,3-dithiane		343
		BuLi	Hexane	Propionaldehyde	2-(1-Hydroxypropyl)-1,3-dithiane	80	343
C₄H₁₀O	Ethyl ether	Cyclohexyl- lithium	Ether	Carbon dioxide	3-Cyclohexylpropionic acid		144
C4H12BrN	Tetramethyl- ammonium bromide	PhLi	Ether	Benzaldehyde	Trimethyl(2-phenyl-2-hydroxy- ethyl)ammonium bromide	58	m
		PhLi	Ether	Benzophenone	Trimethyl-(2,2-diphenyl-2- hydroxyethyl)ammonium bromide	21	m
		PhLi	Ether	Fluorenone	Trimethyl(9-hydroxy-9-fluorenyl- methyl)ammonium bromide	60	m
$C_4H_{14}B_{10}$	1-Vinylcar-	BuLi		Carbon dioxide	1-Vinyl-2-carboxycarborane		471
	borane	BuLi	Benzene Ether	Ethylene oxide	2-(1-Vinyl-2-carboranyl)ethanol	72	474
		RLi RLi	Ether Benzene Ether	Mercuric chloride Methylmercuric chloride	Bis(vinylcarboranyl)mercury Methyl(vinylcarboranyl)mercury	51 51	473 473
		BuLi	Benzene Ether	Propylene oxide	1-(1-Vinyl-2-carboranyl)-2-pro- panol	72	474
C₅H₃NS	2-Cyanothio-	BuLi	Ether	Carbon dioxide	5-Cyano-2-thiophenecarboxylic acid	4	308
C _b H ₃ NS	3-Cyanothio- phene	3-Thienyl- lithium	Ether	Carbon dioxide	3-Cyano-2-thiophenecarboxylic acid	80	308
	-	BuLi	Ether	Carbon dioxide	3-Cyano-2-thiophenecarboxylic acid	68	308
C₃H₄N₄	Pyridotetra- zole	PhLi	Ether	Carbon dioxide	5,8-Pyridotetrazoledicarboxylic acid	28	360
C₅H₅N	Pyridine	PhLi	Ether	1-Methyl-4- piperidone	4-(2-Pyridyl)-1-methyl-4-hydroxy- piperidine	34	i -
C₅H₅NO₂S	3-Methyliso- thiazole-4- carboxylic acid	BuLi	THF Hexane	Bromine	5-Bromo-3-methylisothiazole-4- carboxylic acid	52	388
$C_{\delta}H_{6}$	Cyclopenta- diene	PhLi	Ether	Benzoyl chloride	1-Benzoyl-6-hydroxy-6-phenyl- fulvene	37	n
		BuLi	Ether	Carbon dioxide	Cyclopentadienecarboxylic acid	72	0
		PhLi	Ether	o-Chlorobenzoyl chloride	1-(o-Chlorobenzoyl)-6-hydroxy- 6-(o-chlorophenyl)fulvene	26	n
		PhLi	Ether	<i>p</i> -Chlorobenzoyl chloride	1-(<i>p</i> -Chlorobenzoyl)-6-hydroxy- 6-(<i>p</i> -chlorophenyl)fulvene	50	n
		BuLi	Ether	Chlorodiethyl- silane	Diethylcyclopentadienylsilane	15	р 441
		BuLi	Ether	nethyltri- siloxane	nethyltrisiloxane	40	441

	Compound metalated	RĹi	Solvent	Reactant	Final product	% vield	Ref
	menununcu		Ether	1.2 Diablanatatan	1 Cuslements dismut 2 chlorestetre	57	
		BuLi	Ether	methyldi- siloxane	methyldisiloxane	57	441
		BuLi	Ether	Dimethyldichloro- silane	Cyclopentadienyldimethylchloro- silane	69	441
		BuLi	Ether	2,3-Diphenyl- indone	2,3-Diphenyl-3-(2,4-cyclopenta- dienyl)-1-indanone	27	q
		PhLi	Ether	<i>p</i> -Methylbenzoyl chloride	1-(p-Toluoyl)-6-hydroxy-6-(p- toluoyl)fulvene	44	n
		BuLi	Ether	Methyltrichloro- silane	Cyclopentadienylmethyldichloro- silane	55	441
		PhLi	Ether	<i>p</i> -Nitrobenzoyl chloride	1-(p-Nitrobenzoyl)-6-hydroxy-6- (p-nitrophenyl)fulvene	39	n
		PhLi	Ether	Phenylazocyclo- pentadienyl- lithium, FeCl₃	Phenylazoferrocene	6	448
	' .	BuLi	Xylene	Titanium tetra- chloride	Dicyclopentadienyltitanium dichloride	74	451
		PhLi	Ether	<i>p</i> -Toluenesulfonyl azide	Diazocyclopentadiene	35	r
C₅H₀O	2-Methyl- furan	BuLi	Ether	Sulfur, <i>n</i> -butyl bromide	5-(Butylthio)-2-methylfuran	66	е
		BuLi	Ether	Sulfur, ethyl iodide	5-(Ethylthio)-2-methylfuran	77	е
		BuLi	Ether	Sulfur, isobutyl bromide	5-(Isobutylthio)-2-methylfuran	59	е
C₅H₀OS	2-Methoxy- thiophene	PhLi	Ether	Acetophenone	5-(1-Phenyl-1-ethylidene)-2(5H)- thiophene	11	\$
		PhLi	Ether	Allyl chloride	5-Methoxy-2-allylthiophene		320
		PhLi	Ether	Benzaldehyde	5-Benzylidene-2(5H)-thiophene	17	5
		BuLi	Hexane	Benzophenone	5-Diphenylmethylene-2(5H)-thio- phenone	69	\$
		PhLi	Ether	Benzophenone	5-Diphenylmethylene-2(5H)-thio- phenone	72	5
		PhLi	Ether	Carbon dioxide	5-Methoxy-2-thenoic acid	61	320
		PhLi	Ether	N,N'-Dimethyl- formamide	2-Methoxy-2-thenaldehyde	67	320
		PhLi	Ether	Dimethyl sulfate	5-Methoxy-2-methylthiophene	40	320
		PhLi	Ether	Ethylene oxide	2-(5-Methoxy-2-thienyl)ethanol	50	t
		BuLi	Ether Hexane	9-Fluorenone	5-(9-Fluorenylidene)-2(5H)-thio- phenone	58	\$
C₅H₀OS	3-Methoxy- thiophene	BuLi	Ether	Carbon dioxide	3-Methoxy-2-thiophenecarboxylic acid	86	304
C5H6O2S2	Methyl 3-thienyl sulfone	BuLi	Ether	Carbon dioxide	2-(3-Thienylsulfonyl)acetic acid	60	305
		BuLi		Carbon dioxide	5-Methyl-2-thiophenecarboxylic acid	84	311
		BuLi BuLi	Ether Ether	Perchloryl fluoride Sulfur, ethyl β- bromoacetate	2-Fluoro-5-methylthiophene (5-Methyl-2-thienylthio)acetic acid	44	j u
C₅H₅S	3-Methylthio- phene	BuLi	Ether	Carbon dioxide	3-Methyl-5-thiophenecarboxylic acid	68	231
	-	BuLi	Ether	Carbon dioxide	3-Methylthiophene-5-carboxylic	61	319
					acid + 3-methylthiophene-2- carboxylic acid	19	
		PhLi	Ether	Carbon dioxide	3-Methylthiophene-5-carboxylic acid + 3-methylthiophene-2- carboxylic acid	68 19	319
		BuLi	Ether	N,N-Dimethyl- formamide	3-Methyl-5-thiophenaldehyde + 3-methyl-2-thiophenealdehyde	83 17	316
		BuLi	Ether	N,N-Dimethyl- formamide	3-Methyl-5-thenaldehyde	61	318

	- ·			Table VI (Continued)		~~	
	Compound metalated	RLi	Solvent	Reactant	Final product	yield	Ref
$C_5H_6S_2$	Methyl 2-thi-	BuLi	Ether	Carbon dioxide	5-Methylthio-2-thiophenecarbox- vlic acid	87	и
		BuLi	Ether	Sulfur, methyl iodide	2,5-Bis(methylthio)thiophene	57	и
$C_6H_6S_2$	Methyl 3-thi- enyl sulfide	BuLi	Ether	Carbon dioxide	3-Methyl-2-thiophenecarboxylic acid	60–70	306
C ₅ H ₇ N	N-Methyl- pyrrole	BuLi	Ether	Carbon dioxide	N-Methylpyrrole-2-carboxylic acid	42	394
C_5H_7N	N-Methyl- pyrrole	3BuLi	Ether	Carbon dioxide	N-Methylpyrrole-2,5-dicarboxylic acid	58	354
C₅H7NS	2,4-Dimethyl- thiazole	BuLi	Ether	Acetaldehyde	2,4-Dimethyl-5-(1-hydroxyethyl)- thiazole	57	391
		BuLi	Ether	Butyraldehyde	2,4-Dimethyl-5-(1-hydroxybutyl)- thiazole	72	391
$C_{5}H_{2}N_{2}$	1,5-Dimethyl- pyrazole	PhLi	Ether	Carbon dioxide	1,3-Dimethyl-5-pyrazolecarbox- ylic acid	34	а
$C_5H_{10}S_2$	2-Methyl-1,3-	BuLi	Hexane	Benzonitrile	2-Methyl-2-benzoyl-1,3-dithiane	80	344
	dithiane	BuLi	Hexane	Benzophenone	2-Methyl-2-(diphenylhydroxy- methyl)-1,3-dithiane	83	343
		BuLi	Hexane	Benzyl bromide	2-Benzyl-2-methyl-1,3-dithiane	90 70	343
		BuLi	Hexane	Benzylidene-	2-Metnyl-2(α -aniinobenzyl)-1,3- dithiane	70	343
		BuLi	Hexane	Cyclohexanone	2-Methyl-1-(1-hydroxycyclo- hexyl)-1,3-dithiane	80	343
		BuLi	Hexane	1,4-Dibromo- butane	1,4-Di(2-methyl-2-thianyl)butane	89	344
		BuLi	Hexane	N,N-Diethyl-2- chloroacet- amide	N,N-Diethyl-2-methyl-1,3-di- thiane-2-acetamide	50	343
		BuLi	Hexane	Ethyl benzoate	2,2'-(α-Hydroxybenzylidene)bis- (2-methyl-1,3-dithiane)	95	344
		BuLi	Hexane	Ethyl chloro- formate	2-Methyl-1,3-dithiane-2-carbox- ylic acid ethyl ester	60	344
		BuLi	Hexane	Ethyl cyclohex- anecarboxylate	2-Methyl-2-cyclohexanoyl-1,3- dithiane	60	344
		BuLi	Hexane	Ethyl formate	α-Oxopropionaldehyde dithio- ketal	50	344
		BuLi	Hexane	Isopropyl iodide	2-Methyl-2-isopropyl-1,3- dithiane	84	343
		BuLi	Hexane	Styrene oxide	2-Methyl-2-(2-hydroxy-2-phenyl- ethyl)-1,3-dithiane	70	343
$C_5H_{14}B_2$	1,1-Diboro- pentane	MeLi		Ethyl bromide (NaOH, H ₂ O ₂)	3-Heptanol	90	487
		BuLi		Ethyl bromide (NaOH, H ₂ O ₂)	3-Heptanol	55	487
$C_{\delta}H_{1\delta}B_{1\delta}$	1-Isopropen- ylcarborane	BuLi	Ether	Carbon dioxide	Isopropenylcarboranecarboxylic acid	79	470
		PhLi	Ether	Methyl iodide	Methylisopropenylcarborane		470
$C_5H_{18}B_{10}$	Isopropyl- carborane	BuLi		Benzaldehyde	α-(Isopropylcarboranyl)benzyl alcohol	59	c
		BuLi		Carbon dioxide	1-Isopropyl-2-carboxycarborane	•	471
C ₆ HCl ₅	Pentachloro- benzene	BuLi	THF	Carbon dioxide	Pentachlorobenzoic acid	91	420
C₅HF₅	Pentafluoro- benzene	BuLi	Hexane THF	Carbon dioxide	Pentafluorobenzoic acid	82	418
C ₆ H ₂ Cl ₄	1,2,4,5-Tetra- chloroben-	BuLi	Ether	Carbon dioxide	2,3,5,6-Tetrachlorobenzoic acid + tetrachloroterephthalic acid	48 27	420
	zene	2BuLi	THF	Carbon dioxide	2,3,5,6-Tetrachlorobenzoic acid + tetrachloroterephthalic acid	30 42	420
$C_6H_2F_4$	1,2,4,5-Tetra- fluoroben- zene	BuLi	Hexane THF	Carbon dioxide	2,3,5,6-Tetrafluorobenzoic acid + 2,3,5,6-tetrafluorotere- phthalic acid	3 67	418, 41 9
	20110	BuLi	Hexane Ether	Carbon dioxide	2,3,5,6-Tetrafluorobenzoic acid	85	419

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C ₆ H ₂ F ₄	1,2,3,4-Tetra- fluoroben-	BuLi	Hexane THF	Carbon dioxide	2,3,4,5-Tetrafluorobenzoic acid		418
C₅H₂F₄O	2,3,5,6-Tetra- fluoro-	BuLi	THF Hexane	Carbon dioxide	4-Hydroxy-2,3,5,6-tetrafluoro- benzoic acid	83	421
C ₆ H ₂ F ₄ S	2,3,5,6-Tetra- fluorothio-	BuLi	Ether Hexane	Carbon dioxide	4-Thiol-2,3,5,6-tetrafluorobenzoic acid	77	421
C _€ H₃F₄N	2,3,5,6-Tetra- fluoro-	BuLi	THF Hexane	Carbon dioxide	4-Amino-2,3,5,6-tetrafluoroben- zoic acid	45	421
C₀H₄F₃	<i>m</i> -Difluoro- benzene	BuLi	THF Hexane	Carbon dioxide	2,6-Difluorobenzoic acid	88	421
C₀H₅F	Fluoroben- zene	BuLi	THF	Carbon dioxide	o-Fluorobenzoic acid	60	183
C ₆ H ₅ Li	Phenyl- lithium	BuLi	Pentane- benzene	Carbon dioxide	Terephthalic acid (2) Isophthalic acid (1)	5	21
C₀H₅OS	2-Methoxy- thiophene	BuLi	Ether	Methyl <i>p</i> -toluene- sulfonate	5-Methoxy-2-methylthiophene	78	316
C₀H₅S	2-Methylthio- phene	BuLi	Ether	Dimethyl sulfide	5-Methylthio-2-methylthiophene	75	316
C ₆ H ₆ N ₄	5-Methyl- pyrido- tetrazole	PhLi	Ether	Carbon dioxide	5-Pyridotetrazoylacetic acid	42	360
C ₆ H ₆ N ₄	6-Methyl- pyrido- tetrazole	PhLi	Ether	Carbon dioxide	6-Methylpyridotetrazole-5,8- dicarboxylic acid	11	360
C ₆ H ₆ N ₄	8-Methyl- pyrido- tetrazole	PhLi	Ether	Carbon dioxide	5-Carboxy-8-methylpyridotetra- zole	18	360
C₀H ₇ N	2-Methyl- pyridine	PhLi	Ether	2-Amino-4-me- thoxybenzo- phenone	(o-Aminophenyl)-(p-methoxy- phenol)(2-pyridylmethyl)- carbinol	78	347
		PhLi	Ether	Benzyl chloride	2-Phenethylpyridine + dibenzyl- 2-pyridylmethane	38 52	v
		PhLi	Ether	3-Bromopropanal diethyl acetal	4-(2-Pyridyl)butanal diethyl acetal	37	w
		PhLi	Ether	2-Bromopyridine	Di(2-pyridyl)methane + tri(2- pyridyl)methane	30 25	v
		PhLi	Ether	<i>n</i> -Butyl bromide	2-Amylpyridine	79	D
		PhLi	Ether	3-Chloropropanal diethyl acetal	4-(2-Pyridyl)butanal diethyl acetal	60	w
		PhLi	Ether	$Cl(CH_2)_nC = CH$	$C_{4}H_{4}NCH_{2}(CH_{2})_{n}C \equiv CH$	40-65	x
		PhLi	Ether	2-Chloroethanal diethyl acetal	3-(2-Pyridyl)propanal diethyl acetal	3849	w
		PhLi		Cinnamylidene- acetophenone	1,5-Diphenyl-6-(2-pyridyl)-1,3- hexadien-5-ol		У
		PhLi	Ether	∆ ^{s(10)} -Dehydro- quinolizidinium perchlorate	10-(a-Picolyl)quinolizidine	65	Z
		PhLi	Ether	Ethyl benzoate	Phenyl 2-picolyl ketone	80	aa
		PhLi	Ether	Ethyl bromide	2-Propylpyridine	92	D
		PhLi		Isobutyl borate	Lithium triisobutoxy-2-picolyl- borate	97	348
		PhLi	Ether	Isopropyl bromide	2-Methyl-6-isobutylpyridine	93	U
		PhLi	Ether	Methyl acetate	Acetyl 2-picolyl ketone	36	aa
		PhLi	Ether	Methyl benzoate	Phenyl 2-picolyl ketone	82	aa
		PhLi	Ether	Methyl furoate	Furyl 2-picolyl ketone	58	aa
		PhLi	Ether	Methyl jodide	2-Ethylpyridine	73	D
		PhLi	Ether	Methyl isobuty- rate	Isobutyryl 2-picolyl ketone	61	aa
		PhLi	Ether	Methyl isovalerate	Isovaleryl 2-picolyl ketone	67	aa
		PhLi	Ether	Methyl propio- nate	Propionyl 2-picolyl ketone	50	aa

•	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		PhLi	Ether	Methyl 2-thio- phenecarbox- vlate	2-Thienyl 2-picolyl ketone	74	aa
		PhLi	Ether	Phenyl di(iso- butyl)borate	Lithium diisobutoxy-2-picolyl- phenylborate	37	348
		PhLi	Ether	5-Phenyl-2,4-pen- tadien-1-al	1-Phenyl-6-(2-pyridyl)-1,3,5-hexa- triene	15	bb
		PhLi	Ether	Propionaldehyde	2-(β-Hydroxybutyl)pyridine		сс
		PhLi	Ether	n-Propyl bromide	2-Butylpyridine	74	v
C ₆ H ₇ N	4-Methyl- pyridine	PhLi	Ether	Acetyl bromide	1-(4-Pyridyl)-2-propanone	34	352
		MeLi	Ether	Benzyl chloride	4-Phenethylpyridine + dibenzyl- 4-pyridylmethane	43 47	v
		PhLi	Ether	2-Bromoethanal diethyl acetal	3-(4-Pyridyl)propanal diethyl acetal	39	352
		MeLi	Ether	<i>n</i> -Butyl bromide	4-n-Amylpyridine	74	v
		PhLi	Ether	Carbon dioxide, ethanol	Ethyl β -(4-pyridyl)acetate	34	352
		MeLi	Ether	Ethyl bromide	4-n-Propylpyridine	74	v
		MeLi	Ether	Isopropyl bromide	4-Isobutylpyridine	82	v
		PhLi	Ether	n-Propyl bromide	4-n-Butylpyridine	60	353
		MeLi	Ether	n-Propyl bromide	4-n-Butylpyridine	69	v
C ₆ H ₈	Methylcyclo- pentadiene	BuLi	Ether	Ferric chloride	1,1'-Dimethylferrocene		447
C ₆ H ₈ O	2-Ethylfuran	BuLi	Ether	Sulfur, ethyl iodide	5-(Ethylthio)-2-ethylfuran	76	е
C ₆ H ₈OS	2-(Ethylthio)- furan	BuLi	Ether	Sulfur, ethyl iodide	2,5-Bis(ethylthio)furan	77	e
C ₀H₅OS	2-Methoxy- 5-methyl- thiophene	BuLi	Ether	Carbon dioxide	2-Methoxy-5-methyl-3-thenoic acid	50	320
C ₆ H ₈ S	2,3-Dimethyl- thiophene	BuLi	Ether	Carbon dioxide	4,5-Dimethyl-2-thenoic acid		318
C ₆ H ₈ S	3,4-Dimethyl- thiophene	BuLi	Ether	Carbon dioxide	3,4-Dimethyl-2-thenoic acid		318
C₀H₅S	3,5-Dimethyl- thiophene	BuLi	Ether	N,N-Dimethyl- formamide	3,5-Dimethyl-2-thenaldehyde	69	318
C ₆ H ₈ S ₂	Ethyl 2-thi- enyl sulfide	BuLi	Ether	Carbon dioxide	5-Ethylthio-2-thiophenecarbox- ylic acid	77	u
C₄H₅S₂	Methyl 5- methyl-2- thienyl sul- fide	BuLi	Ether	Carbon dioxide	2-Methylthio-5-methyl-3-thio- phenecarboxylic acid	27	u
C ₈ H ₉ NS	5-Methyl-4- ethylthia- zole	BuLi	Ether	Propylene oxide	5-Methyl-4-ethyl-2-(2-hydroxy- propyl)thiazole	76	391
$C_{\bullet}H_{10}$	1-Hexyne	RLi	Ether	Paraformaldehyde	Hept-2-yn-1-ol	80	209
C4H12S2	1,2-Bis(ethyl- thio)eth-	BuLi	Ether	Acetone	1-Ethylthio-3-hydroxy-3-methyl- 1-butyne	70	147
	ylene	BuLi	Ether	Benzaldehyde	1-Ethylthio-3-hydroxy-3-phenyl- 1-propyne	56	147
		BuLi	Ether	Cyclohexanone	1-(Ethylthioethynyl)-1-hydroxy- cyclohexane	55	147
C5H18B10O5	2-Carboranyl- ethyl ace- tate	BuLi	Ether Heptane	Carbon dioxide	2-(2-Hydroxyethyl)carborane- carboxylic acid		475
$C_6H_{20}B_{10}$	1-Butylcar- borane	BuLi		Carbon dioxide	1-Butyl-2-carboxycarborane		47 1
C ₆ H ₂₆ B ₂₀ O	Bis(1-carbor- anylmeth-	BuLi	THF	Carbon dioxide	Bis(2-carboxy-1-carboranyl- methyl) ether	50-91	dd
	yl) ether	BuLi	Ether	Ethylene oxide	Bis $(2-\beta$ -hydroxyethyl-1-carbor- anylmethyl) ether	86	dd
		BuLi	Ether	Paraformalde- hyde	Bis(2-hydroxymethyl-1-carbor- anylmethyl) ether	50	dd

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C ₇ HF ₇	2,3,5,6-Hep- tafluoro-	BuLi	Hexane THF	Carbon dioxide	4-Trifluoromethyl-2,3,5,6-tetra- fluorobenzoic acid	77	421
$C_7H_2F_4O_2$	2,3,5,6-Tetra-	BuLi	Hexane THE	Carbon dioxide	Tetrafluoroterephthalic acid	9 4	419
	zoic acid	BuLi	Hexane Ether	Chlorine	4-Chloro-2,3,5,6-tetrafluoro- benzoic acid		419
		BuLi	Hexane THF	Sulfur	4-Thiol-2,3,5,6-tetrafluoroben- zoic acid	69	419
C7H4F4	2,3,5,6-Tetra- fluoro- toluene	BuL i	Hexane Ether	Carbon dioxide	4-Methyl-2,3,5,6-tetrafluoro- benzoic	88	421
C ₇ H₅NS	Benzothia- zole	BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Bis(2-benzothiazolyl) ketone		207
		BuLi	Ether	Triphenylsilyl bromide	2-Triphenylsilylbenzothiazole	19	ee
$C_7H_6Cl_2$	Benzal chlo- ride	BuLi	THF Hexane	Carbon dioxide	Phenylglyoxylic acid	42–61	186, 195
		BuLi	THF Hexane	Tetramethyl- ethylene	1-Chloro-1-phenyltetramethyl- cyclopropane	48	186
C₁H₀S	2-(Propynyl)- thiophene	BuLi	Ether	Carbon dioxide	5-(Propynyl)thiophene-5-carbox- ylic acid	37	ttt
		Bu Li	Ether	N,N-Dimethyl- formamide	5-(1-Propynyl)-2-formylthio- phene	21	ttt
C7H7BrO	<i>p</i> -Bromo- anisole	Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	5-Bromo-2-methoxybenzoic acid	34	g
		2,4,6- Ph₃PhLi		Carbon dioxide	5-Bromo-2-methoxybenzoic acid	25	172
C ₇ H ₇ F	o-Fluoro- toluene	BuLi	THF	Carbon dioxide	2-Fluoro-3-methylbenzoic acid	3	183
C ₇ H ₇ F	<i>p</i> -Fluoro- toluene	BuLi	THF	Carbon dioxide	2-Fluoro-5-methylbenzoic acid	58	183
C7H7IO	<i>p</i> -Iodoanisole	Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	5-Iodo-2-methoxybenzoic acid	22	g
C ₇ H ₈	Norborna- diene	BuLi	Ether	Carbon dioxide	endo-2-Norcamphanecarboxylic acid	15	267
C_7H_8	Toluene	BuLi- DABCO	Hexane	Benzophenone	Benzyldiphenylcarbinol	85	50
		BuLi	Ether THF	Carbon dioxide	Phenylacetic acid	24	170
C7H8O	Phenyl methyl ether	BuLi	Ether	Carbon dioxide	2-Methoxybenzoic acid	10	ſſ
$C_7H_8O_2$	<i>m</i> -Methoxy- phenol	BuLi	Ether	Carbon dioxide	2-Methoxy-6-hydroxybenzoic acid + 2-methoxy-4-hydroxy- benzoic acid	13 5	300
$C_7H_8O_2$	o-Methoxy- phenol	BuLi	Ether	Carbon dioxide	2-Methoxy-3-hydroxybenzoic acid + 2-hydroxy-3-methoxy- benzoic acid	2 2	300
C7H8O2S	3-Thiophene- carbox- aldehyde ethylene acetal	BuLi	Ether	Carbon dioxide	3-Formyl-2-thiophenecarboxylic acid	78	312
C7H8S	Phenyl methyl sulfide	BuLi	Ether	Tetraethoxysilane	Tetra(benzenethiomethyl)silane	42	88
C7H8S	Thioanisole	BuLi- DABCO	Hexane	Acetone	1-Phenylmercapto-2-hydroxy- 2-methylpropane	77	330
		BuLi DABCO	THF	Benzophenone	Phenyl (2,2-diphenyl-2-hydroxy)- ethyl sulfide	93	330
		BuLi- DABCO	Hexane	Deuterium oxide	Thioanisole-α-D	99	330
		BuLi- DABCO	Hexane	Isopropyl iodide	Phenyl isobutyryl sulfide	55	330

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C7H ₉ N	2-Ethyl-	PhLi PhI i	Ether	Ethyl bromide Methyl iodide	2-sec-Butylpyridine	91 63	v
C7H₃N	4-Ethyl-	PhLi	Ether	<i>n</i> -Butyl bromide	2-(4'-Pyridyl)hexane	30	353
C7H9N	2,4-Dimethyl-	PhLi	Ether	Benzaldehyde	4-Methyl-2-picolylphenylcarbinol	86	349
	pyname	PhLi	Ether	Benzonitrile	CH_2 N $C-Ph$ CH_2 $C-Ph$	28	350
		2PhLi	Ether	Benzonitrile	α -Methyl- α' -phenacylpyridine	30	350
		PhLi	Ether	Benzyl chloride	2-Methyl-5-phenethylpyridine	20	350
		2PhLi	Ether	Benzyl chloride	2-Methyl-6-(dibenzylmethyl)- pyridine	25	350
		PhLi	Ether	1-Chloro-1,2- diphenylethane	1,2-Diphenyl-3-(α -picolyl- α')- propane	15	350
		PhLi	Ether	Methyl benzoate, benzoyl chloride	2-Phenacyl-6-methylpyridine	67	hh
C_7H_{10}	Tricyclo- [4.1.0.0 ^{2,7}]-	BuLi	Ether	Carbon dioxide	1-Carboxytricyclo[4.1.0.0 ^{2,7}]- heptane		266
	heptane	BuLi	Ether	Deuterium oxide	1-Deuteriotricyclo[4.1.0.0 ^{2,7}]- heptane		266
		BuLi	Ether	Methyl iodide	1-Methyltricyclo[4.1.0.0 ^{2,7}]- octane		266
$C_7H_{11}NS$	2,5-Dimethyl- 4-ethyl-	BuLi	Ether	Acetaldehyde	5-Methyl-4-ethyl-2(2-hydroxy- propyl)thiazole	60	391
	thiazole	BuLi	Ether	Butyraldehyde	5-Methyl-4-ethyl-2-(3-hydroxy- pentyl)thiazole	60	391
C ₇ H ₁₄ S ₂	2-Isopropyl- 1,3-dithiane	BuLi	Hexane	Benzophenone	2-Isopropyl-2-(diphenylhydroxy- methyl)-1,3-dithiane	52	343
$C_7H_{20}B_{10}O_2$	3-Carbor- anylpropyl	BuLi BuLi	Hexane Ether Heptane	Isopropyl iodide Ethylene oxide	2,2-Diisopropyl-1,3-dithiane 1,2-Bis-2,2'-hydroxyethylcarbor- ane	70	343 480
C ₅ H ₆	Phenylacet- vlene	Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	Phenylpropynoic acid	65	g
		Ph₃SiLi PhLi	THF Ether	Carbon dioxide N,N-Dimethyl- carbamoyl chloride	Phenylpropynoic acid N,N-Dimethylpropiolamide	40	271 207
		BuLi	Ether	Triphenylchloro- silane	Triphenylphenylethynylsilane	72	171
C ₈ H ₆ N ₂ O ₂	3-Phenyl- sydnone	BuLi	Hexane Ether	Carbon dioxide	3-Phenylsydnone-4-carboxylic acid	60	387
C ₈ H ₄ O	Benzofuran	Poly- <i>p</i> -sty- ryllithium	THF	Carbon dioxide	Benzofuran-2-carboxylic acid	15	g
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Bis(2-benzofuranyl) ketone		207
C ₅ H ₆ OCl ₂	Phenoxy-1,2- dichloro- ethylene	BuLi	Ether	Cyclohexanone	1-(Phenoxyethynyl)cyclohexanol	60	416
C.H.S	Thiaindene	BuLi	Ether	Diethyl sulfate	2-Ethylthiaindene	81-91	ii-kk
C ₈ H ₆ S	Thianaph- thene	BuLi	Ether	Acetaldehyde	Methyl-2-thianaphthenylcarbinol	72	325
		BuLi	Ether	Benzaldehyde	Phenyl-2-thianaphthenylcarbinol	70	325
		BuLi	Ether	Bromine	2-Bromothianaphthene	39	325
		BuLi	Ether	Carbon dioxide	2-Thianaphthenecarboxylic acid	82	231
		BuLi	Ether	p-Chlorobenz- aldehyde	<i>p</i> -Chlorophenyl-2-thianaph- thenylcarbinol	68	325
		BuLi	Ether	<i>p</i> -Dimethylamino- benzaldehyde	<i>p</i> -Dimethylaminophenyl-2-naph- thenylcarbinol	47	325
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Bis(2-thianaphthenyl) ketone		207
		BuLi	Ether	Fluorobenzene	2-Phenylthianaphthene	55	11
		BuLi	Ether	Formaldehyde	2-Thianaphthenylmethanol	48	mm

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi	Ether	Methyl <i>o</i> -toluene-	2-Methylthianaphthene	43	325
		BuLi	Ether	Perchloryl fluoride	2-Fluorothianaphthene	70	i
		BuLi	Ether	Phenyl isocyanate	N-Phenylthianaphthene-2- carboxamide	81	325
		BuLi	Ether	o-Tolyl isocyanate	N-o-Tolylthianaphthene-2- carboxamide	41	325
		BuLi	Ether	Triphenylchloro- silane	2-Triphenylsilyldibenzothio- phene	90	ee
C tHs 2 C tHs 2	2,2'-Bithienyl 2,3'-Bithienyl	PhLi PhLi	Ether Ether	Carbon dioxide Carbon dioxide	5-(2'-Thienyl)-2-thenoic acid 2,3'-Bithienyl-5'-carboxylic acid (38)	74	321
					+ 2,3'-bithienyl-2'-carboxylic acid (52)	75	321
C _t H ₇ N	Indole	BuLi	Ether	Carbon dioxide	1-Indolecarboxylic acid	61	355
C _s H ₇ N	Phenylaceto-	BuLi	Ether	Benzophenone	2,3,3-Triphenylacrylonitrile	30	180, 182
	nitrile	BuLi	THF	n-Butyl bromide	Phenyl-n-butylacetonitrile	73	155
		BuLi	THF	<i>n</i> -Butyl bromide	α,α'-Di- <i>n</i> -butylphenylaceto- nitrile	69	155
		BuLi	THF	Carbon dioxide	Phenylcyanoacetic acid	38–47	180, 182, 369
		MeLi	Ether	Carbon dioxide	Phenylcyanoacetic acid	38-47	180, 182
		o-MePhLi o-Naphthyl-	Ether Ether	Carbon dioxide	Phenylcyanoacetic acid Phenylcyanoacetic acid	38-47 38-40	180, 182 182
		lithium					
		PhLi	Ether	Carbon dioxide	Phenylcyanoacetic acid	38-47	180, 182
		PrLi BuLi	Ether THF	Carbon dioxide Deuterium oxide	Phenylcyanoacetic acid α, α' -Dideuteriophenylnitrile	38-47 89	180, 182 155
		BuLi	Hexane THF Hexane	Ethylene chloride	1-Phenyl-1-cyanocyclopropane	69	155
C ₈ H ₇ O ₂ Na	Sodium phenyl	BuLi	Ether		2,4-Diphenyl-3-butyl-3-hydroxy- butanoic acid	42-55	178
	acetate	BuLi	Ether	Benzalaceto-	2,3-Diphenyl-4-benzoylbutyric acid	38	181
		BuLi	Dioxane	Benzophenone	2,3,3-Triphenyl-3-hydroxy- propionic acid	28	179
		BuLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxy- propionic acid	46-52	1 79 , 182
		BuLi	Ether	Benzyl styryl ketone	4-Benzoyl-2,3-diphenylbutyric acid	38	182
		BuLi	Ether	Carbon dioxide	Phenylmalonic acid	30	179 , 182
		BuLi	Ether	<i>p</i> -Chlorobenzal- acetophenone	1-Phenyl-2-(p-chlorophenyl)-4- benzoylbutyric acid	51	181
		BuLi	Ether	<i>p</i> -Methoxybenzal- acetophenone	1-Phenyl-2-(p-methoxyphenyl)-4- benzoylbutyric acid	29	181
	,	BuLi	Ether	<i>p</i> -Methoxystyryl benzyl ketone	4-Benzoyl-3-(p-methoxyphenyl)- 2-phenylbutyric acid	29	182
·		<i>sec-</i> BuLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	18	179, 182
		t-BuLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	12-14	179, 182
		Cyclohexyl- lithium	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	20	179, 182
		3,5-Me ₂ PhLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	72	182
		EtLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	18-21	179, 182
		i-AmLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	35	179, 182
		<i>i</i> -PrLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	23-25	179, 182
		p-MeOPhLi	Ether	<i>p</i> -Methoxybenzyl ketone	2,4-Diphenyl-3-(<i>p</i> -methoxy- phenyl)-3-hydroxybutyric acid	38	182
		MeLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	3	179, 182

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		m-MePhLi	Ether	m-Tolyl benzyl	2,4-Diphenyl-3(m-tolyl)-3-	40-43	182
		o-MePhLi	Ether	ketone Benzophenone	nydroxybutyric acid 2,3,3-Triphenyl-3-hydroxypro- pionic acid	64-67	182
		o-MePhLi	Ether	Benzyl chloride	2.3-Diphenylpropionic acid	75-77	182. nn
		o-MePhLi	Ether	o-Chlorobenzyl chloride	3-Phenyl-2-(o-chlorophenyl)-	71-74	182
		o-MePhLi	Ether	<i>p</i> -Chlorobenzyl chloride	3-Phenyl-2-(p-chlorophenyl)- propionic acid	7072	182
		o-MePhLi	Ether	<i>p</i> -Chlorostyryl benzyl ketone	4-Benzoyl-3-(p-chlorophenyl)- 2-phenylbutyric acid	51	182
		o-MePhLi	Ether	<i>p</i> -Cyanobenzyl chloride	3-Phenyl-2-(p-cyanophenyl)- propionic acid	80-85	182
		o-MePhLi	Ether	Styryl ketone	2,3,7-Triphenyl-5-oxo-6- heptenoic acid	45	181, 182
		<i>p</i> -MePhLi	Ether	<i>p</i> -Tolyl benzyl ketone	2,4-Diphenyl-3-(p-tolyl)-3- hydroxybutyric acid	45	182
		α-Naphthyl- (C10H7)Li	Ether	Benzalaniline	2,3-Diphenyl-3-aminophenyl- propionic acid	74	182
		α -C ₁₀ H ₇ Li	Ether	Benzal-p- methoxyaniline	2,3-Diphenyl-3-amino(p- methoxyphenyl)propionic acid	78	182
		α -C ₁₀ H ₇ Li	Ether	Benzal- <i>p</i> -methyl- aniline	2,3-Diphenyl-3-amino(p-tolyl)- propionic acid	60	182
		α -C ₁₀ H ₇ Li	Ether	Benzal-β-naph- thylamine	2,3-Diphenyl-3-amino(β-naph- thyl)propionic acid	70	182
		α -C ₁₀ H ₇ Li	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	65–70	182
		α -C ₁₀ H ₇ Li	Ether	Carbon dioxide	Phenylmalonic acid	42	182
		α -C ₁₀ H ₇ Li	Ether	Iodine	2,3-Diphenylsuccinic acid	53	182
		α -C ₁₀ H ₇ Li	Ether	α-Naphthyl benzyl ketone	2,4-Diphenyl-3-(α-naphthyl)- 3-hydroxybutyric acid	28	182
		PhLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid		177
		PhLi	Ether	Carbon dioxide	Phenylmalonic acid	42	177
		PhLi	Ether	Phenyl benzyl ketone	2,3,4-Triphenyl-3-hydroxybutyric acid	39-4 1	182
		PrLi	Ether	Benzophenone	2,3,3-Triphenyl-3-hydroxypro- pionic acid	42-48	179, 182
		PrLi	Ether	Carbon dioxide	Phenylmalonic acid	25	182
		RLi	Ether	<i>o</i> -Chlorobenzyl chloride	2-Phenyl-3-(o-chlorophenyl)- propionic acid	73	182
		RLi	Ether	<i>p</i> -Chlorobenzyl chloride	2-Phenyl-3-(p-chlorophenyl)- propionic acid	70	182
		RLi	Ether	<i>m</i> -Cyanobenzyl chloride	2-Phenyl-3-(<i>m</i> -cyanophenyl)- propionic acid	82	182
		o-CH₃- C₅H₄Li	Ether	Diethyl adipate	1,6-Diphenyl-2,5-hexadione + 7-phenyl-6-oxoheptanoic acid	16 33	173
		o-CH₃- C₅H₄Li	Ether	Diethyl malonate	1,5-Diphenyl-2,4-hexadione + ethyl 4-phenyl-3-oxobutyrate	6 12	173
		o-CH3- C6H4Li	Ether	Ethyl acetate	Benzyl methyl ketone (66%) + 2,4-diphenyl-3-methyl-3- hydroxyglutaric acid (9%)		173
		o-CH₃- C₅H₄Li	Ethdr	Ethyl benzoate	2,3,4-Triphenyl-3-hydroxy- glutaric acid + benzyl	5 41	173
					phenyl ketone		
		o-CH₃- C₄H₄Li	Ether	Ethyl cinnamate	2,3,6-Triphenyl-5-oxo-hexanoic acid + benzyl styryl ketone	48 10	173
		o-CH₃- C₅H₄Li	Ether	Ethyl phenyl- acetate	2,4-Diphenyl-3-benzyl-3-hydroxy- glutaric acid + benzyl ketone	2 40	173
		o-CH₃- C₅H₄Li	Ether	Ethyl sebacate	11-Phenyl-10-oxoundecanoic acid + 1,12-diphenyl-2,11- decadione	64 31	173
C ₈ H ₈	Styrene	BuLi	Ether	Carbon dioxide	2-Phenylheptanoic acid	Trace	273
C ₈ H ₈ N ₂	1-Methyl- benzimid-	BuLi	Ether	Carbon dioxide	1-Methyl-2-benzimidazolecar- boxylic acid	45	359

Table VI (Continued)

733

azole

1 K	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C _s H _s S	5-Methyl-4H- cyclopenta-	BuLi	Ether	Carbon dioxide	4-Carboxyindene		00
	phene	D. T.	Ethan	Cookon diavida	6 Carbony indone		
C₆H₆S	5-Metnyl-oH- cyclopenta- [b]thio-	BULI	Etner	Carbon dioxide	o-Car boxyindene		00
C₀H₀NO	Phenylacet-	BuLi	THF Hexane	n-Butyl bromide	Phenyl-n-butylacetamide	87	371
C ₆ H ₉ ON	N-Methyl-	2.5BuLi	Hexane THF	Acetophenone	o-(1-Hydroxy-1-phenylethyl)-N- methylbenzamide	43	378
	, conzamileo	2.5BuLi	Hexane THF	Benzaldehyde	3-Phenylphthalide	49	378
		2.5BuLi	Hexane THF	Benzonitrile	o-Benzimidoyl-N-methylbenz- amide	53	378
		2.5BuLi	Hexane THF	Benzophenone	α, α' -Diphenyl- α -hydroxy-N- methyl- α -toluamide	81	378
		2.5BuLi	Hexane THF	<i>p</i> -Chlorobenzo- phenone	α -(4-Chlorophenyl)- α -hydroxy- α -phenyl-N-methyl- o -tolu- amide	51	378
:.	£ •	2.5BuLi	Hexane THF	Cyclohexanone	Spiro[cyclohexane-1,1'-phthalan]- 3'-one	27	378
4		2.5BuLi	Hexane THF	Cyclohexene oxide	1,2,3,4,4a,10b-Hexahydro-6H- dibenzo[b,d]pyran-6-one	11	378
. 44	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	2.5BuLi	Hexane THF	Fluorenone	Spiro[fluorene-9,1'-phthalan]- 3'-one	58	378
C8H10	Dimethyl- fulvene	MeLi PhLi	Ether Ether	Ferric chloride Ferric chloride	1,1'-Di-t-butylferrocene 1,1'-Bis(α, α '-dimethylbenzyl)- ferrocene	94 73-90	434 434
		PhLi	Ether	Tetrapyridine- nickel chloride	1,1'-Di(α, α '-dimethylbenzyl- cyclopentadienyl)nickel	63	452
CH	3.8-Octadivne	RLi	Ether	Paraformaldehyde	Nona-2,4-diyn-1-ol	77	209
C _b H ₁₀ O	Benzyl methyl ether	2Li	THF	Triphenylchloro- silane	Triphenylbenzylsilane	75	39
C _s H ₁₀ O	o-Methyl- anisole	BuLi	Ether	Carbon dioxide	 <i>o</i>-Methoxyphenylacetic acid + 2-methoxy-3-methylbenzoic acid 	5	294
C ₆ H ₁₀ O	<i>p</i> -Methyl- anisole	BuLi	Ether	Carbon dioxide	2-Methoxy-5-methylbenzoic acid	16	294
C ₅ H ₁₀ O ₂	Hydro- quinone dimethyl ether	Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	2,5-Dimethoxybenzoic acid	6	g
C ₅ H ₁₀ O ₂	Resorcinol dimethyl ether	Mesityl- lithium		Carbon dioxide	2,6-Dimethoxybenzoic acid	35	172
C ₅ H ₁₀ O ₂	Resorcinol dimethyl ether	Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	2,6-Dimethoxybenzoic acid	48	g
C ₅ H ₁₀ O ₂ S	2-Methyl-2-	BuLi	Hexane Ether	Benzaldehyde	Phenyl-2-thienyl(5-acetylethylene- ketal)carbinol	60	302
	1,3-dioxo-	BuLi	Hexane Ether	Benzonitrile	2-Acetyl-5-benzoylthiophene	66	302
	. satto	BuLi	Hexane Ether	Carbon dioxide	2-Acetyl-5-thiophenecarboxylic acid	70	302
		BuLi	Hexane Ether	Chlorotrimethyl- silane	2-Methyl-2-(2-thienyl-5-tri- methylsilyl)-1,3-dioxolane	96	302
	1	BuLi	Hexane Ether	Phenyl isocyanate	Phenyl(2-acetylethylene ketal)-5- thiophenecarboxylic acid amide	65	302
C ₈ H ₁₀ O ₈ S	Methyl <i>p</i> -tolyl sulfone	BuLi	Ether	Triphenylchloro- silane	Triphenyl(p-toluenesulfonyl- methyl)silane	31	gg

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C ₈ H ₁₀ S	Methyl	BuLi	Ether	Tetraethoxysilane	Tetra(<i>p</i> -toluenethiomethyl)-	53	88
	sulfide	BuLi	Ether	Trimethylchloro- silane	Trimethyl(<i>p</i> -toluenethiomethyl)- silane	78	gg
		BuLi	Ether	Triphenylchloro- silane	Triphenyl(p-toluenethiomethyl)- silane	67	88
C ₈ H ₁₁ N	α-(Dimethyl- amino)- fulvene	MeLi	Ether	Ferrous chloride	1,1'-Bis(1-dimethylaminoethyl)- ferrocene	71	452
$C_8H_{11}N$	Dimethyl- aniline	BuLi	Hexane	Acetophenone	1-(o-Dimethylaminophenyl)-1- phenylethanol	25	372
		BuLi	Hexane	Benzophenone	o-(N,N-Dimethylamino)tritanol	56	372
		BuLi	Hexane	4,4-Bis(dimethyl- amino)benzo- phenone	<i>o,p',p''</i> -Tris(N,N-dimethyl- amino)tritanol	21	372
		BuLi	Hexane	2-Butanone	2-(o-Dimethylaminophenyl)-2- butanol	20	372
		BuLi	Hexane	Cyclohexanone	1-(o-Dimethylaminophenyl)- cyclohexanol	31	372
		BuLi	Hexane	Cyclohexene oxide	2-(o-Dimethylaminophenyl)- cyclohexanol + 1-(o-dimethyl- aminophenyl)cyclohexene	14 7	372
		BuLi	Hexane	Hexafluoro- acetone	o-(Dimethylaminophenylbistri- fluoromethyl)carbinol +	71	372
					<i>m</i> -(dimethylaminophenylbistri- fluoromethyl)carbinol	19	
$C_8H_{11}N$	2,4,6-Tri- methyl- pyridine	PhLi	Ether	Benzaldehyde	2-(4,6-Dimethylpicolyl)phenyl- carbinol	64	349
C ₈ H ₁₁ P	Dimethyl- phenyl-	t-BuLi	Pentane	Carbon dioxide, sulfur	Carboxymethylmethylphenyl- phosphine sulfide	36	457
	phosphine	t-BuLi	Pentane	Chlorotrimethyl- silane, sulfur	Methylphenyl(trimethylsilyl- methyl)phosphine sulfide + bis(trimethylsilylmethyl)- phenylphosphine sulfide		456
C_8H_{12}	1-Methyl- tricyclo- [4.1.0.0. ^{2,7}]- heptane	BuLi	Ether	Methyl iodide	1,2-Dimethyltricyclo[4.1.0.0. ^{2,7}]- nonane		266
C_8H_{12}	Oct-1-yn-3- ene	RLi	Ether	Paraformaldehyde	Non-4-en-2-yn-1-ol	75	209
$C_8H_{12}OS$	3-t-Butoxy- thiophene	BuLi	Ether	Carbon dioxide	3-t-Butoxy-2-thiophenecarboxylic acid	62	307
$C_8H_{12}O_2S$	t-Butyl 2-thienyl sulfone	BuLi	Ether THF	N,N-Dimethyl- formamide	3-t-Butylsulfonyl-2,4-thiophene- dicarboxaldehyde	38	340
$C_8H_{12}S$	2- <i>t</i> -Butyl- thiophene	BuLi	Ether	Carbon dioxide	2-t-Butyl-5-thiophenecarboxylic acid	68	316
$C_8H_{12}S_2$	Ethyl 5-ethyl- 2-thienyl sulfide	BuLi	Ether	Carbon dioxide	2-Ethylthio-5-ethyl-3-thiophene- carboxylic acid	7	u
$C_8H_{12}Sn$	Tetravinyl-	PhLi	Ether	Acetone	Dimethylvinylcarbinol	75	<i>qq</i>
	tin	PhLi	Ether	Arsenic trichloride	Trivinylarsine	51	<i>qq</i>
		PhLi	Ether	Carbon dioxide	Acrylic acid	18	<i>qq</i>
		PhLi PhI i	Ether	Tri- <i>n</i> -butyltin chloride Triphenylsilicon	Tri- <i>n</i> -butylvinyltin	74	99
CHUS	Trimethyl	BDI:	Banzona	fluoride	1 1 Dis(trimothuls:hul)formerer	0U	99 422
~81113 0 1	silylcyclo- pentadiene	LJUL/I	pet. ether	rente chiofide	1,1-DIS(UIIII)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	50	433
$C_8H_{16}B_{10}$	Phenylcar- borane	RLi	Benzene Ether	Antimony tri- chloride	Tris(phenylcarboranyl)antimony	57	473
		RLi	Benzene Ether	Arsenic trichloride	Tris(phenylcarboranyl)arsine	55	473

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi		Benzaldehyde	α-(Phenylcarboranyl)benzyl alcohol	31	с
	×	BuLi	Benzene Ether	Carbon dioxide	Phenylcarboranecarboxylic acid	92	471, 476
		RLi	Ether	Cyanoge n chloride	1-Phenyl-2-cyanocarborane +		rr
		RLi		Diethyl phthalate	Phenylcarboranylphthalide	63	483
		RLi	Benzene Ether	Di-n-hexylchloro-	Di- <i>n</i> -hexyl(phenylcarboranyl)- phosphine	52	483
		BuLi	Benzene Ether	Epichlorohydrin	1-(1-Phenyl-2-carboranyl)-3- chloro-2-propanol		474
		RLi		Ethyl benzoate	Phenylcarboranylphenylcarbinol	74	483
		RLi		Ethyl p-chloro- benzoate	Phenylcarboranyl-p-chloro- phenylcarbinol	72	483
		BuLi	Benzene Ether	Ethylene oxide	2-(1-Phenyl-2-carboranyl)ethanol	92	474
		RLì	Benzene Ether	Germanium tetra- chloride	Bis(phenylcarboranyl)germanium dichloride	59	473
		RLi	Ether	Mercuric chloride	Bis(phenylcarborane)mercury	70	473
		RLi		Methyl benzoate	1-Phenyl-2-benzoylcarborane	62	483
		RLi		Methyl <i>p</i> -bromo- benzoate	1-Phenyl-2- <i>p</i> -bromobenzoyl- carborane	72	483
		2RLi	Benzene	Methyl cinnamate	2-(2-Phenyl-1-carboranyl)-2- phenyl ethyl ketone	86	482
		BuLi	Benzene	Methylmercuric bromide	Methyl(phenylcarboranyl)- mercury	62	473
		RLi		Methyl p-toluate	1-Phenyl-2-p-toluoylcarborane	73	483
		RLi	Benzene	Phenyl styryl ketone	2-(2-Phenyl-1-carboranyl) 2-phenyl ketone	94	482
		RLi	Benzene Ether	Phosphorus tri- chloride	Bis(phenylcarboranyl)chloro- phosphine	52	473
		BuLi	Benzene Ether	Propylene oxide	1-(1-Phenyl-2-carboranyl)- 2-propanol	72	474
		RLi	Benzene Ether	Silicon tetra- chloride	Bis(phenylcarboranyl)dichloro- silane	64	473
		RLi	Benzene	Stannic chloride	Tris(phenylcarboranyl)tin chlo- ride + bis(phenylcarboranyl)- tin dichloride	25 37	473
		RLi	Benzene	Styryl <i>t</i> -butyl ketone	2-(2-Phenyl-1-carboranyl) 2-t-butyl ketone	95	482
		RLi	Benzene Ether	Tin tetrabromide	Bis(phenylcarboranyl)tin dibromide	61	473
		RLi	Benzene	Trimethylchloro- silane	Trimethyl(phenylcarboranyl)- silane	61	473
		RLi	Benzene	Triphenyltin chloride	Triphenyl(phenylcarboranyl)tin	84	473
C ₅ H ₁₆ S ₁	2-t-Butyl-1,3- dithiane	BuLi	Hexane	Isopropyl iodide	2-t-Butyl-2-isopropyl-1,3-dithiane	45	343
C₃H₅	Indene	BuLi	Ether	β -Bromoethyl propionate	β -1- (or 3-) Indenyl propionate	14	276
		BuLi	Ether	Carbon dioxide	1-Indenecarboxylic acid	93	276, 278, 279, <i>0</i> 0
		Ph ₂ SiLi	THF	Carbon dioxide	1-Indenecarboxylic acid	57	271
			xylene	silàne Dimethyldichloro	1-(1-Indenyl)dimethylailyl 1	04	55
			xylene Ether	silane	indene	24 57	33
		Buli	Pentane_	indone Methyltrichloro-	indanone) (71	ee R
		Duci	xylene	silane	1-(INTERTINGICITION OSTIVI)-1-INDERE	/4	33
		PhLi	Ether	Nitrous oxide, carbon dioxide	Indene-1-carboxylic acid	62	277
		PhLi BuLi	Ether Ether	Oxygen Tetraphenylcyclo- pentadienone	Indene hydroperoxide 2,3,4,5-Tetraphenyl-3-(1-indenyl)- 4-cvclopenten-1-one	35	tt g

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi	Pentane-	Triethylchloro-	1-(Triethylsilyl)-1-indene	50	<i>SS</i>
		2BuLi	Pentane- xvlene	silane Triethylchloro- silane	1,1-Bis(triethylsilyl)-1-indene	28	<i>SS</i>
		BuLi	Pentane- xylene	Trimethylchloro- silane	1-(Trimethylsilyl)-1-indene	59	<i>ss</i>
		2BuLi	Pentane- xylene	Trimethylchloro- silane	1,1-Bis(trimethylsilyl)-1-indene	15	SS
		<i>n</i> -PrLi	Ether	Triphenylchloro- silane	Triphenyl-1-indenylsilane + 1,1-bis(triphenylsilyl)indene	13 8	171, uu
C ₉ H ₄ N ₂	N-Phenyl- imidazole	BuLi	Ether	Benzophenone	1,α,α-Triphenyl-1H-imidazole- 2-methanol	76	358
		BuLi	Ether	Carbon dioxide	N-Phenyl-2-imidazolecarboxylic acid	60	358
		3BuLi	Ether	Carbon dioxide		5	358
		BuLi	Ether	Ethyl chloro- formate	1-Phenyl-1H-imidazole-2-carbox- ylic acid ethyl ester	5	358
		BuLi	Ether	Ethyl chloro- formate, hydra- zine	1-Phenyl-1H-imidazole-2-carbox- ylic acid hydrazide	20	358
		BuLi	Ether	Phenyl isocyanate	1-Phenyl-1H-imidazole-2-carbox- ylic acid anilide	39	358
C ₉ H ₈ N ₁	1-Phenyl- pyrazole	BuLi	Ether	Carbon dioxide	1-Phenyl-5-pyrazolecarboxylic acid + 1-(<i>a</i> -carboxyphenyl)- pyrazole	39 10	356
		2BuLi	Ether	Carbon dioxide	4-Oxopyrazolo[1,5-a]indolene + 8(?)-carboxy-4-oxopyrazole- [1,5-a]indolene	8 26	356
C₀H₀S	3-Methylthia- naphthene	BuLi	Ether	Carbon dioxide	3-Methylthianaphthene-2-carbox- vlic acid	65	326
C₂H₂N	1-Methyl- indole	BuLi	Ether	Benzophenone	1-Methyl-2-indolyldiphenyl- carbinol	53	355
		BuLi	Ether	Carbon dioxide	1-Methyl-2-indolecarboxylic acid	78	355
		BuLi	Ether	<i>p</i> -Chlorobenz- aldehyde	1-Methyl-2-indolyl-(<i>p</i> -chloro- phenyl)carbinol	50	355
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	1-Methyl-2-indolyl butyl ketone		207
		BuLi	Ether	Methyl <i>p</i> -toluene- sulfonate	1,2-Dimethylindole	45	355
		BuLi	Ether	Naphthyl iso- cyanate	N-α-Naphthyl-1-methyl-2-indole- carboxamide	52	355
		BuLi	Ether	Phenyl isocyanate	N-Phenyl-1-methyl-2-indolecar- boxamide	42	355
		BuLi	Ether	Quinoline	1-Methyl-2-(2'-quinolyl)indole	54	355
		BuLi	Ether	o-Tolyl isocyanate	N-(o-Tolyl)-1-methyl-2-indole- carboxamide	63	355
C ₉ H ₁₀	Aliyibenzene	BuLi Duli	Ether	Benzophenone	(1,1,4-1 riphenyl-3-buten-1-ol	41	vv
			Ether	(H ⁺)	2-Phenyl-2-butenoic acid (32)	57 QA	00
		BuLi	Luici	(11)	Propenylbenzene (46)		00
C ₉ H ₁₀	Propenyl- benzene	BuLi	Ether	Carbon dioxide	3,5-Dimethyl-2,4-diphenyl- nonanoic acid + 3-methyl- 2-phenylheptanoic acid	10 5	vv
$C_9H_{10}O$	2-Methyl- dihydro- benzofuran	BuLi	Ether	Carbon dioxide	2-Methyl-7-carboxy-2,3-dihydro- benzofuran	66	ww
$C_9H_{11}NO$	N-Methyl-o- toluamide	BuLi	Hexane THF	Benzaldehyde	2-(β-Phenyl-β-hydroxy)ethyl-N- methylbenzamide	51	382
		BuLi	Hexane THF	Benzophenone	2- $(\beta,\beta$ -Diphenyl- β -hydroxy)- ethyl-N-methylbenzamide	93	382

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi	Hexane	Cyclohexanone	α-(1-Hydroxycyclohexyl)-N-	65	382
	·	BuLi	Hexane THF	Cyclopentanone	α -(1-Hydroxycyclopentyl)-N- methyl- α -toluamide	41	382
		BuLi	Hexane THF	Fluorenone	α-(9-Hydroxy-9-fluorenyl)-N- methyl- <i>o</i> -toluamide	50	382
$C_9H_{11}NO$	N-Acetylben- zvlamine	BuLi		Benzaldehyde	PhCHOHCH ₂ CONHCH ₂ Ph		377
$C_9H_{12}O$	o-Ethyl- anisole	BuLi	Ether	Carbon dioxide	2-Methoxy-3-ethylbenzoic acid		294
$C_9H_{13}N$	Benzyldi- methylamine	BuLi	Ether	Acetone	2-(Dimethylaminomethyl)phenyl- dimethylcarbinol	40-46	374
	· · ·	BuLi	Ether Hexane	Benzaldehyde	2-(Dimethylaminomethyl)benz- hydrol	78	374, <i>xx</i>
		BuLi	Ether Hexane	Benzonitrile	2-(Dimethylaminomethyl)benzo- phenone	63	374
		BuLi	Ether Hexane	Benzophenone	2-(Dimethylaminomethyl)tri- phenylcarbinol	84	374
		PhLi	Ether	Benzophenone	2-(Dimethylaminomethyl)tri- phenylcarbinol	21	373
		BuLi	Ether	2-Chlorobenz- aldehyde	2-(Dimethylaminomethyl)-2'- chlorobenzhydrol	80	374
		BuLi	Ether Hexane	Cyclohexene oxide	2-(Hydroxycyclohexyl)benzyldi- methylamine	36	374
		BuLi	Ether	Deuterium oxide	Benzyldimethylamine-2-d		375
		BuLi	Ether	2,3-Dibromo-2,3-	o-Bromobenzyldimethylamine	69	376
		D., T ;	Hexane	2 (Dimethylbutane	2.21 Bisdimathylaminamathyl	50	274
		DULI	Hexane	aminomethyl)-	triphenylcarbinol	39	374
		BuLi	Ether Hexane	Hexachloroethane	o-Chlorobenzyldimethylamine	63	376
		BuLi	Ether	4-Methoxybenz- aldehyde	2-(Dimethylaminomethyl)-4'- methoxybenzhydrol	78	374
		BuLi	Ether Hexane	Methyl benzoate	2,2'-Bisdimethylaminomethyl- triphenylcarbinol	59	374
		BuLi	Ether Hexane	Methylene iodide	o-Iodobenzyldimethylamine	64	376
		BuLi	Ether Hexane	Phenyl isocyanate	2-(Dimethylaminomethyl)-N- phenylbenzamide	65	374
		BuLi	Ether	3,4,5-Trimethoxy- benzaldehyde	2-(Dimethylaminomethyl)- 3',4',5'-trimethoxybenz- hydrol	56	374
		BuLi	Ether	n-Valerophenone	2-(Dimethylaminomethyl)di- phenyl-n-butylcarbinol		374
$C_{9}H_{18}S_{2}$	2-n-Amyl-1,3-	BuLi	Hexane	n-Amyl bromide	2,2-Di-n-amyl-1,3-dithiane	82	343
	dithiane	BuLi	Hexane	Benzophenone	2-n-Amyl-2-(diphenylhydroxy- methyl)-1,3-dithiane	78	343
		BuLi	Hexane	Geranyl bromide	2-n-Amyl-2-geranyl-1,3-dithiane	80	343
		BuLi	Hexane	Isopropyl bromide	2-n-Amyl-2-isopropyl-1,3- dithiane	85	343
C10H7F	1-Fluoro- naphtha- lene	BuLi	THF	Carbon dioxide	1-Fluoro-2-naphthalenecarbox- ylic acid	30	183
C10H8	Naphthalene	BuLi	THF Ether	Carbon dioxide	Naphthalene-1-carboxylic acid + naphthalene-2-carboxylic acid	9 9	157
C10H9N	1-Methyliso-	BuLi	Ether	Allyl bromide	1-(3-Butenyl)isoquinoline	66	уу
	quinoline	BuLi	Ether	Benzalaceto- phenone	β-Phenyl-γ-(1-isoquinolyl)- butyrophenone hydrochloride	59	עע
		BuLi	Ether	Benzophenone	Diphenylisoquinaldylcarbinol	100	уу
		BuLi	Ether	Ethyl acetate	Methyl isoquinaldyl ketone	35	уу
		BuLi	Ether	Ethyl (bromo- methyl)malonate	β-(1-Isoquinolyl)ethyl malonic ester	16	УУ
		BuLi BuLi	Ether	Ethyl isobutyrate Ethyl methylene- malonate	sopropyl isoquinaldyl ketone β -(1-Isoquinolyl)ethyl malonic ester	33 14	уу УУ УУ

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
	· .	BuLi BuLi	Ether Ether	Isopropyl iodide Methallyl chloride	1-Isobutylisoquinoline 1-(3-Methyl-3-butenyl)isoquino-	40 64	уу уу уу
C₁₀H₃N	N-Phenyl- pyrrole	BuLi	Ether	Carbon dioxide	line N-Phenylpyrrole-2-carboxylic acid	20	354
						Trace	
$C_{10}H_9N$	Quinaldine	PhLi	Ether	5-Phenyl-2,4-penta- dien-1-al	1-Phenyl-6-(2-quinolyl)-5- hydroxy-2,4-hexadiene	20	bb
$C_{10}H_{10}Fe$	Ferrocene	BuLi	Ether	Benzophenone	Bis(diphenylhydroxymethyl)- ferrocene		435
		BuLi		N-Benzylhydrox- ylamine	Ferrocenylamine	25	449
		BuLi	THF Ether	Butyl borate	Ferrocenylboronic acid + 1,1'- ferrocenylenediboronic acid	26–44 13–18	442, 443
		BuLi	Ether	Carbon dioxide	Ferrocenemonocarboxylic acid + ferrocenedicarboxylic acid	2678	431, 432, 433, 159, 430, 453, 428
		BuLi	Ether	Carbon dioxide, diazomethane	Carboxymethylferrocene (59) + 1,1'-dicarbomethoxyferrocene (41)		431
		BuLi	THF	Chloroethyl- methylsilane	(Ethylmethylsilyl)ferrocene + 1,1'-bis(ethylmethylsilyl)- ferrocene		р
		BuLi	Ether THF	Chlorodiethyl- silane	Diethylsilylferrocene + 1,1'- bis(diethylsilyl)ferrocene		р
		BuLi	Ether	Cobalt chloride	Biferrocenyl		ZZ
		BuLi	Ether	Cobalt chloride, butyl bromide	Triferrocenyl + quaterferro- cenyl		ZZ
		BuLi	Ether THF	Diferrocenyl ketone	Triferrocenylcarbinol	60-77	436, <i>aaa</i>
		BuLi	Ether	2-Dimethylamino- ethyl chloride	N,N-Dimethyl-2-ferrocenyl- ethylamine	3	bbb
		BuLi	Ether	Epichlorohydrin	Ferrocenechlorohydrin	13	zz, ccc, ddd
		BuLi	Ether	Ferrocenecarbo- nitrile	Diferrocenyl ketone	80	436
		BuLi	Ether THF	Ferrocenecarbox- aldehyde	Diferrocenylcarbinol	62	aaa
		BuLi	Ether THF	Nitrous oxide	Azoferrocene	25	446
		BuLi	Ether	Pyridine	α -Pyridylferrocene + 1,1'-bis- (α -pyridyl)ferrocene	24 3	444
		BuLi	Ether	Trienyisilane	bistriethylsilylferrocene	22	p
		BULI	THF	silane	di(tri- <i>n</i> -hexylsilyl)ferrocene +	32 35	433
			Ether	silane	bis(trimethylsilyl)ferrocene	19–57 27–43	428, 431
6 H N		BULI	Etner	silane	I ripnenyisiiyiierrocene	49	429
$C_{10}H_{10}N_2$	N-Benzyl- imidazole	BuLi	Ether	Carbon dioxide	1-Benzyl-2-imidazolecarboxylic acid	67	358
СИМ	1 Don-1	DULI DLI:	Ether	Quinoline	2-Quinoiyi-i-benzylimidazole	29	358
$\mathcal{M}_{10}\Pi_{10}N_2$	ругаzole	rati	Etner	Carbon dioxide	acid	57	a
C ₁₀ H ₁₀ N ₂	3-Methyl- 1-phenyl- pyrazole	BuLi	Ether	Carbon dioxide	3-Methyl-1-phenylpyrazole-5- carboxylic acid		357
$C_{10}H_{10}Os$	Osmocene	BuLi	Ether THF	Carbon dioxide	Osmocenemonocarboxylic acid (42) + osmocenedicarboxylic acid (58)		453

	a ,			Table VI (Continuea)			
	metalated	RLi	Solvent	Reactant	Final product	yield	Ref
C10H10Ru	Ruthenocene	BuLi	Ether	Carbon dioxide	Ruthenocenemonocarboxylic acid + ruthenocenedicarbox- vlic acid	4887	453
C10H10S2	5-Methyl- 2.2'-dithi-	BuLi	Ether	Carbon dioxide	5'-Methyl-2,2'-dithienylmethane-	55	eee
	enylmeth-	BuLi	Ether	Ethylene oxide	5-cu boxyne uch 5-(β -Hydroxyethyl)-5'-methyl- 2 2'-dithienylmethane	75	eee
		BuLi	Ether	N-Formaldi- methylamine	5'-Methyl-2,2'-dithienylmethane- 5-carboxaldehyde		eee
$C_{10}H_{10}S_2$	5,5'-Dimeth- yl-3,3'- bithienyl	BuLi	Ether	Carbon dioxide	2,2'-Dicarboxy-5,5'-dimethyl- 3,3'-bithienyl	45-60	309, 310
C10H11ClO2	2-(p-Chloro- phenoxy)- tetrahydro- pyran	BuLi	Ether	Carbon dioxide	2-Hydroxy-5-chlorobenzoic acid	25	ſſ
C10H12N2	α-Dimethyl- amino- phenyl- aceto- nitrile	BuLi	Ether	Ethyl bromide	Propiophenone	42	370
$C_{10}H_{12}O_{2}$	2-Phenoxy- tetrahydro- pyran	BuLi	Ether	Carbon dioxide	2-Hydroxybenzoic acid	60	ſſ
$C_{10}H_{12}S_2$	2-Phenyl-1,3- dithiane	BuLi	Hexane	Isopropyl bromide	2-Isopropyl-2-phenyl-1,3-dithiane	90	343
C10H13N	N,N-Dimeth- yl(β-phenyl- isobutyl)- amine	BuLi	Ether	Benzophenone	ο-(α-Dimethylaminomethyliso- propyl)triphenylcarbinol	17	379
$C_{10}H_{14}O_2S$	<i>t</i> -Butyl phenyl	BuLi	Ether THF	Carbon dioxide	2-(t-Butylsulfonyl)benzoic acid	40-45	338
	sulfone	2BuLi	Ether THF	Carbon dioxide	2-Butylisophthalic acid	44	338
		2BuLi	Ether THF	Carbon dioxide	2-Ethylisophthalic acid	42	338
$C_{10}H_{15}N$	N,N-Dimeth- yl-β-phenyl-	BuLi	Ether	Benzaldehyde	 o-(N,N-Dimethylamino-β-ethyl)- diphenylcarbinol 		380
	ethylamine	BuLi	Ether	Benzophenone	 o-(N,N-Dimethylamino-β-ethyl)- triphenylcarbinol 		380
$C_{10}H_{15}N$	2-Methyl- benzyl-	BuLi	Hexane Ether	Acetone	2-[α-(Dimethylamino)- <i>o</i> -tolyl]- 1,1-dimethylethanol	46	381
	dimethyl- amine	BuLi	Hexane Ether	Benzaldehyde	2-[α-(Dimethylamino)- <i>o</i> -tolyl]- 1-phenylethanol	77	381
		BuLi	Hexane Ether	Benzophenone	2-[α-(Dimethylamino)-o-tolyl]- 1,1-diphenylethanol	80	381
		BuLi	Ether	Deuterium oxide	2-Methyl- <i>d</i> ₁ -benzyldimethyl- amine		375
C10H15P	Phenylmeth- yl- <i>n</i> -propyl- phosphine	t-BuLi	Pentane	Carbon dioxide, sulfur	Phenyl <i>n</i> -propylcarboxymethyl- phosphine sulfide		ſſſ
C ₁₀ H ₁₅ PS	Phenylmeth- yl- <i>n</i> -propyl- phosphine sulfide	t-BuLi		Carbon dioxide	Phenyl <i>n</i> -propylcarboxymethyl- phosphine sulfide		fff
$\begin{array}{c} C_{10}H_{16}O\\ C_{11}H_{8}O_{4}S_{2}\end{array}$	Camphor Phenyl 2-thienyl sulfone	PhLi BuLi	Ether	Carbon dioxide Carbon dioxide	Camphocarbonic acid 2-Benzenesulfonyl-5-thiophene- carboxylic acid	60	415 332
C ₁₁ H ₉ OD	1-Methoxy- naphtha- lene-8-d	BuLi	Ether	Carbon dioxide	1-Methoxy-2-naphthoic acid-8-d	32	293
C ₁₁ H ₁₀ O	1-Methoxy- naphtha- lene	BuLi BuLi	Ether Ether Hexane	Carbon dioxide Carbon dioxide, diazomethane	1-Methoxy-8-naphthoic acid Methyl 1-methoxy-2-naphthoate (83) + methyl 8-methoxy-1-naph- thoate (17)) 31	222 293

Table VI (Continued)

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi LiBr	Ether Hexane	Carbon dioxide, diazomethane	Methyl 1-methoxy-2-naphthoate (86) + methyl 8-methoxy-1-naph- thoate (14)	22	293
		BuLi LiOEt	Ether Hexane	Carbon dioxide, diazomethane	Methyl 1-methoxy-2-naphthoate (78) + methyl 8-methoxy-1-naph- thoate (11)	25	293
C11 H10 O	2-Methoxy- naphtha-	BuLi	Ether	Benzophenone	(2-Methoxy-3-naphthyl)diphenyl- carbinol	50	888
	lene	BuLi	Ether	Carbon dioxide	2-Methoxy-3-naphthalenecarbox- ylic acid	54	888
		BuLi	Ether	Methyl iodide	2-Methoxy-3-methylnaphthalene	45	ggg
		BuLi	Ether	Methyl 2-me- thoxy-3-naphthyl- carboxylate	Tri(2-methoxy-3-naphthyl)- carbinol	42	888
C _{i1} H ₁₁ NO	2-Ethoxy- quinoline	BuLi	Ether	Carbon dioxide	2-Ethoxy-3-quinolinecarboxylic acid	7	hhh
C11H12S2	5,5'-Dimeth- yl-2,2'-di- thienyl- methane	BuLi	Ether	Carbon dioxide	5,5'-Dimethyl-2,2'-dithienyl- methane-3- (or 4-) carboxylic acid	51	eee
$C_{11}H_{14}$	Pentamethy- lenefulvene	PhLi	Ether	Ferrous chloride	1,1'-Di(1-phenylcyclohexyl)- ferrocene	96	434
$C_{11}H_{14}O$	Acetomesity- lene	BuLi	THF Hexane	Deuterium oxide	Dideuterioacetomesitylene	60	155
$C_{11}H_{14}O$	2,2-Dimethyl- chroman	BuLi	Ether	Carbon dioxide	2,2-Dimethyl-8-chromancarbox- ylic acid	31	296
C11 H14O	5-Methoxy- 1,2,3,4- tetrahydro- naphtha- lene	BuLi	Ether	Carbon dioxide	5-Methoxy-1,2,3,4-tetrahydro- naphthalenecarboxylic acid	6	242
C ₁₁ H ₁₄ O ₂	Phenol-2- tetrahydro- pyranyl ether	BuLi	Ether	Ethylene oxide	<i>o</i> -Phenoxy-β-phenylethanol	89	301
C ₁₁ H ₁₄ S ₃	2-Benzyl-1,3- dithiane	BuLi	Hexane	Ethyl chloro- formate	Ethyl 2-benzyl-2-(1,3-dithianyl)- formate	78	344
C11 H16O	1,4-Dime- thoxy-2,3,5- trimethyl- benzene	BuLi	Ether	Acetaldehyde	1,4-Dimethoxy-2,5-dimethyl-3- β-hydroxypropylbenzene		295
C11 H16O2S	n-Butyl p-tolyl	BuLi	Ether	Carbon dioxide	2-(p-Toluenesulfonyl)pentanoic acid	78	336
	sulfone	BuLi	Ether	<i>p</i> -Toluenesulfonyl fluoride	1,1-Bis(p-toluenesulfonyl)butane	60	336
C11 H17N	α,α-Dimeth- ylbenzyl- dimethyl- amine	BuLi	Ether	Benzophenone	2-(N,N-α,α'-Tetramethylamino- methyl)benzhydrol	57	374
C11H17N	2,3-Dimethyl- benzyl- dimethyl-	BuLi	Hexane Ether	Acetone	2-(2-Dimethylaminomethyl-6- methylphenyl)-1,1-dimethyl- ethanol	61	381
	amine	BuLi	Hexane Ether	Benzophenone	2-(2-Dimethylaminomethyl-6- methylphenyl)-1,1-diphenyl- ethanol	80	381
		BuLi	Ether	Deuterium oxide	2-Methyl- <i>d</i> ₁ -3-methylbenzyldi- methylamine		375
$C_{11}H_{17}N$	N,N-Dimeth- yl-3-phen-	BuLi	Hexane Ether	Benzophenone	4-Dimethylamino-1,1,2-tri- phenyl-1-butanol	57	379
	ylpropyl- amine	BuLi	Ether	Deuterium oxide	N,N-Dimethyl-3-phenylpropyl- amine- α - d_1		375
C ₁₂ H ₂ F ₈	2,2',3,3',5,5',- 6,6'-Octa- fluoro- biphenyl	BuLi	THF Hexane	Carbon dioxide	2,2',3,3',5,5',6,6'-Octafluoro- biphenyl-4,4'-dicarboxylic acid	97	421

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
$\overline{C_{12}H_8}$	Biphenylene	BuLi	Ether	Carbon dioxide,	1-Methoxycarbonylbiphenylene	49	iii
		BuLi	Ether	N,N-Dimethyl- formamide	Biphenylene-1-carboxaldehyde		tit
		BuLi	Ether	Oxygen	1-Hydroxybiphenylene	18	iii
C12H ₈ NS	Phenothiazine	BuLi	Ether	Acetyl chloride	10-Acetylphenothiazine	40-88	jij
		BuLi		Benzophenone	1-(Diphenylhydroxymethyl)- phenothiazine	7 0	kkk
		BuLi		Butyl acetate	1-Acetylphenothiazine		111
		2BuLi	Ether	Carbon dioxide	Phenothiazine-1-carboxylic acid	53	jjj
		BuLi	Ether	Dimethyl sulfate	10-Methylphenothiazine	94-99	jjj
		IBuLi	Ether	Ethylene oxide	10-8-Hydroxyethylphenothiazine	83-92	jjj
		2BuLi 2D. L	Ether	Lithium acetate	10-Acetylphenothiazine	40	<i>JJJ</i>
		2BuLi	Ether	Lithium propio-	10-Propionylphenothiazine	42 33	ננג נונ
C ₁₂ H ₂ O	Dibenzofuran	Li	Dioxane	Carbon dioxide	o-Hydroxybiphenyl	80	288
- 11		Li	Ether	Carbon dioxide	3.4-Benzocoumarin	64	288
		C ₆ H ₅ CH ₂ Li	THF	Carbon dioxide	Dibenzofuran-4-carboxylic acid	35	mmm
		C ₆ H ₅ CH ₂ Li	THP	Carbon dioxide	Dibenzofuran-4-carboxylic acid	8	mmm
		BuLi	<i>n</i> -Butyl Ether	Carbon dioxide	Dibenzofuran-4-carboxylic acid	76	156
	* .	BuLi	Ether	Carbon dioxide	Dibenzofuran-4-carboxylic acid	5-56	156, 157
		BuLi	THF Ether	Carbon dioxide	Dibenzofuran-4-carboxylic acid	69-86	156, 157
		BuLi	THF	Carbon dioxide	Dibenzofuran-4-carboxylic acid	- 75	157
		BuLi	Petroleum Ether	Carbon dioxide	Dibenzofuran-4-carboxylic acid	1	156
		MeLi	Ether	Carbon dioxide	Dibenzofuran-4-carboxylic acid	2	157
		MeLi	Ether THF	Carbon dioxide	Dibenzofuran-4-carboxylic acid	12	157
•		MeLi		Carbon dioxide	Dibenzoluran-4-carboxylic acid	29	157
		α -Me(CH ₂ - C ₆ H ₄)Li	IHF	Carbon dioxide	Dibenzofuran-4-carboxylic acid	. 39	mmm
				Carbon dioxide	Dibenzofuran-4-carboxylic acid	0	157
		PhI i	Ether THE	Carbon dioxide	Dibenzofuran-4-carboxylic acid	44 55	157
		Poly- <i>p</i> -sty- ryllithium	Ether	Carbon dioxide	Dibenzofuran-4-carboxylic acid	21	g
		2,4,6-Ph ₂ - PhLi		Carbon dioxide	Dibenzofuran-4-carboxylic acid	4	172
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Bis(4-dibenzofuranyl) ketone		207
		BuLi	Ether	Triphenylchloro- silane	1-Triphenylsilyldibenzofuran	69	ee
C ₁₂ H ₈ OS	Dibenzothio- phene 5- oxide	BuLi	Ether	Carbon dioxide	Dibenzothiophene-4-carboxylic acid	36–55	323, 327
C ₁₂ H ₈ OS	Phenoxathiin	BuLi		Carbon dioxide	4-Phenoxathiincarboxylic acid + 1,6-phenoxathiindicarboxylic acid	37	383, 384
	· .	2BuLi	Ether	Carbon dioxide	4,6-Dicarboxyphenoxathiin +	35	383, 384
					1,6-dicarboxyphenoxathiin	9	,
		2MeLi	Ether	Carbon dioxide	4-Phenoxathiincarboxylic acid	12	384
$C_{12}H_8OS_1$	Thianthrene	BuLi	Ether	Carbon dioxide	Dibenzothiophene	46	nnn
	5-oxide	2BuLi	Ether	Carbon dioxide	Dibenzothiophene	10	- 4
					Thianthrene Thianthrene-1-carboxylic acid	13 13	327
		3BuLi	Ether	Carbon dioxide	Dibenzothiophene	55	227
					Intantarene	3	321
		3Buli	Ether	Carbon diovide	Dibenzothionhene	52	ппп
		البليا فلال	Luci	Caroon dioxide	Thianthrene	8	11111
		MeLi	Ether	Carbon dioxide	1-Thianthrenecarboxylic acid	1	nnn

Table VI (Continued)
------------	------------

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		3MeLi	Ether	Carbon dioxide	Thianthrene	60	
					1-Thianthrenecarboxylic acid	1	nnn
$C_{12}H_8O_2S$	Dibenzothio-	1BuLi	Ether	Carbon dioxide	Dibenzothiophene-4-carboxylic	22	324
	phene 5,5-	2D I :	Tab	Contrar disside	acid 5,5-dioxide	20	224
	dioxide	ZBULI	Ether	Carbon dioxide	Dibenzotniopnene-4-carboxylic	20	324
					Dibenzothionhene-4 6-dicarbox-	4	
					vlic acid 5.5-dioxide	-	
		3BuLi	Ether	Carbon dioxide	Dibenzothiophene-4,6-dicarbox- vlic acid 5,5-dioxide	10	324
$C_{12}H_8O_2S$	Phenoxathiin	BuLi	Ether	Carbon dioxide	Thianthrene-1-carboxylic acid	20	385
	10-oxide	2BuLi	Ether	Carbon dioxide	Phenoxathiin	14	386
					Diphenyl ether	42	
				<u> </u>	1-Carboxyphenoxathiin	16	
		3BuLi	Ether	Carbon dioxide	Diphenyl ether	14	207
					Phenoxathiin Di(a carboxyphonyl) other	25 17	380
					Carboxyphenyl phenyl ether	17	
					1-Carboxyphenoxathiin	6	
					Butyl mercaptan	7	
$C_{12}H_8O_2S_2$	Thianthrene	BuLi	Ether	Carbon dioxide	4-Carboxythianthrene 5-dioxide	41	328
	5-dioxide	BuLi	Ether	Carbon dioxide	4,6-Dicarboxythianthrene 5- dioxide	12	328
		PhLi	Ether	Carbon dioxide	4,6-Dicarboxythianthrene 5- dioxide	54	328
C12H8O8S	Phenoxathiin 10,10-di-	BuLi	Ether	Carbon dioxide	1,6-Dicarboxyphenoxathiin 10,10-dioxide	8	384
	oxide	BuLi	Ether	Carbon dioxide	10,10-dioxide	40	385
		BuLi	Ether	Carbon dioxide	10,10-dioxide	48	383, 384
		20.11	Ether	Carbon diavide	dioxide	12	284
		MeLi	Ether	Carbon dioxide	10,10-dioxide	18	504
					dioxide 1.9-Dicarboxyphenoxathiin	3	384
					10,10-dioxide		
C ₁₂ H ₈ O ₈ S	Thianthrene 5,5,10-tri-	BuLi	Ether	Carbon dioxide	2,2-Dicarboxyphenyl phenyl sulfone	17	328
C II S	OXIde Dihannathia	г:	Diavana	Carbon diavida	Dinhanal	21	200
C12H85	phene	LI	Dioxane	Carbon dioxide	a Thiobinhenyl	18	200
	phene	BuLi	Ether	Carbon dioxide	4-Dibenzothiophenecarboxylic	25-35	157, 384
		2BuLi	Ether	Carbon dioxide	Butyl 4-dibenzothienyl ketone	5	322
		BuLi	Ether	Carbon dioxide	Dibenzothiophene-4-carboxylic	60	157
		BuLi	THF THF	Carbon dioxide	acid Dibenzothiophene-4-carboxylic	41	157
		MeLi	Ether	Carbon dioxide	acid Dibenzothiophene-4-carboxylic	Trace	157
		MeLi	THF	Carbon dioxide	acid Dibenzothiophene-4-carboxylic	12	157
		MeLi	THF	Carbon dioxide	acid Dibenzothiophene-4-carboxylic	5	157
			Ether	Contrar disside	acid	47	167
		rnLi Phi:	IHF Ether	Carbon dioxide	acid	4/	157
		FIILI	THF	Carbon dioxide	acid	12	137
		PhLi	Ether	Carbon dioxide	Dibenzothiophene-4-carboxylic acid	Trace	157
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Bis(4-dibenzothiophenyl) ketone		207

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
-		BuLi	Ether	Triphenylchloro-	4-Triphenylsilyldibenzothiophene	42	ee
C19H3S	Thianthrene	BuLi	Ether	Carbon dioxide	1-Thianthrenecarboxylic acid	28	328
•		BuLi	Ether	Methoxylamine	1-Aminothianthrene	55	328
		BuLi	Ether	Tri-n-butyl borate	1-Thianthreneboronic acid	23	328
		BuLi	Ether	Triphenylchloro- silane	1-Thianthrenyltriphenylsilane	10	328
C12H ₈ Se	Dibenzo- seleno-	BuLi	Ether	Carbon dioxide	Dibenzoselenophene-1-carboxylic acid	96	488
	phene	BuLi	Ether	Dimethyl sulfate	1-Methyldibenzoselenophene	80	488
C₁₂H ₉ BrO₂S	<i>m</i> -Bromo- phenyl phenyl sulfone	BuLi	Ether	Carbon dioxide	3-Bromo-2-carboxyphenyl phenyl sulfone	54	332
C ₁₂ H ₉ BrO ₂ S	<i>p</i> -Bromo- phenyl phenyl sulfone	BuLi	Ether	Carbon dioxide	4-Bromo-2-carboxyphenyl phenyl sulfone	52	332
C ₁₂ H ₉ ClO	4-Chloro- phenyl	BuLi	Ether	Diphenyldichloro- silane	Bis(2-phenoxy-5-chlorophenyl)- diphenylsilane	7	291
	phenyl ether	BuLi	Ether	Triphenylchloro- silane	2-Phenoxy-5-chlorophenyltri- phenylsilane	17	29 1
$C_{12}H_9N$	α-Naphthyl- acetonitrile	PhLi	Ether	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(α- naphthyl)propionitrile	21	175, 182
		BuLi	Ether	Carbon dioxide	2-Naphthyl-2-carboxyacetonitrile	55	175, 182
		o-MePhLi	Ether	Carbon dioxide	2-Naphthyl-2-carboxyacetonitrile	24	175, 182
		α -C ₁₀ H ₇ Li	Ether	Carbon dioxide	2-Naphthyl-2-carboxyacetonitrile	41	175, 182
		PhLi	Ether	Carbon dioxide	2-Naphthyl-2-carboxyacetonitrile	50	175, 182
		PrLi	Ether	Carbon dioxide	2-Naphthyl-2-carboxyacetonitrile	38	175, 182
C ₁₂ H ₉ NO	Phenoxazine	BuLi	Ether	Carbon dioxide	Phenoxazine-4-carboxylic acid	69	284
$C_{12}H_9O_2Na$	Sodium α- naphthyl-	BuLi	Pentane Dioxane	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(α- naphthyl)propionic acid	41	182, <i>000</i>
	acetate	i-AmLi	Pentane Dioxane	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(α- naphthyl)propionic acid	10	182, 000
		<i>i</i> -PrLi	Pentane Dioxane	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(α- naphthyl)propionic acid	16	182, <i>000</i>
		PhLi	Ether	Benzophenone	3,3-Diphenyl-3(hydroxy)-2-(α- naphthyl)propionic acid	57	182
		PrLi	Pentane Dioxane	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(α- naphthyl)propionic acid	45	182, 000
		BuLi	Ether Dioxane	Carbon dioxide	α-Naphthylmalonic acid	7	182, 000
		<i>p</i> -(Me)₂N- PhLi	Ether	Carbon dioxide	α -Naphthylmalonic acid	29	174, 182
		m-MernLi	Ether	Carbon dioxide	α -inaphinyimalonic acid	50	174, 182
		o-MernLi	Einer	Carbon dioxide	α -inaprilipimaionic acid	42	174, 182
		p-MePhLi	Ether	Carbon dioxide	α -Naphthylmalonic acid	20	174, 182
		α -C ₁₀ H ₇ L1	Ether	Carbon dioxide	α -Naphthylmalonic acid	3/	174, 182
			Ether	Carbon dioxide	α -maphinyimalonic acid	20	174, 182
C N O M	0.1'	PhLi	Etner	Dunne	2,3-Di(a-napitiny)/succinic acid	30	162, <i>ppp</i>
C ₁₂ H ₉ O ₂ Na	naphthyl-	BuLi	Dioxane	Benzophenone	naphthyl)propionic acid	32	182, 000
	acetate	i-AmLi	Dioxane	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(β- naphthyl)propionic acid	28	182, 000
		<i>i</i> -PrLi	Dioxane	Benzophenone	naphthyl)propionic acid	8	182, 000
		m-MePhLi	Ether	Benzophenone	3,3-Diphenyl-3-hydroxy-2-(β- naphthyl)propionic acid	17	176, 182
		Del i	Ether	Benzonhenone	naphthyl)propionic acid	10 21	176 182
		PrI i	Pentane	Benzonhenone	naphthyl)propionic acid	41 37	182 000
		rill n-(Me) N	Dioxane	Carbon diovide	naphthyl)propionic acid	J7 10	176
		PhLi	Litter		p-maphinyinatonic aciu	17	170

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		m-MePhLi o-MePhLi p-MePhLi α-C ₁₀ H ₇ Li PhLi PhLi	Ether Ether Ether Ether Ether Ether	Carbon dioxide Carbon dioxide Carbon dioxide Carbon dioxide Carbon dioxide Iodine	β-Naphthylmalonic acid β-Naphthylmalonic acid β-Naphthylmalonic acid β-Naphthylmalonic acid β-Naphthylmalonic acid 2.3-Di $(β$ -naphthylsuccinic acid	20 48 22 26 18-20 28	176 176 176 176 176, 182 182
C12H10	Dihydro-as- indacene	BuLi	Hexane- dime- thoxy- ethane	Ferrous chloride	Bis(as-indacenyliron)	10	999
$C_{12}H_{10}O$	Diphenyl ether	BuLi	Ether	Boron trifluoride etherate	10-Hydroxy-9-oxa-10-bora- anthracene	23	rrr
		BuLi	Ether	<i>n</i> -Butyl meta- borate	10-Hydroxy-9-oxa-10-bora- anthracene	42	rrr
		BuLi t-BuLi	Ether Pet. ether	Carbon dioxide Carbon dioxide	Di(2-carboxyphenyl) ether 2-Phenoxybenzoic acid	23-60 14	386, 292 134
		Ph ₃ SiLi BuLi	THF Ether	Carbon dioxide Dibenzyldichloro- silane	Di(2-carboxyphenyl) ether 10,10-Dibenzylphenoxasilin	Trace 52	sss 289
		BuLi	Ether	Di- <i>n</i> -dodecyldi- chlorosilane	Di-n-dodecylbis(o-phenoxy- phenyl)silane	1729	289
		BuLi	Ether	Dimethyldichloro- silane	10,10-Dimethylphenoxasilin	25–51	158, 292
		BuLi	Ether THF	Diphenylsilane	10,10-Diphenylphenoxasilin	20	290
		BuLi	Ether	Diphenyldichloro- silane	Bis(2-phenoxyphenyl)diphenyl- silane	34-40	291, 292
		BuLi	Ether THF	Phenylsilane	10-Phenylphenoxasilin	26	290
		BuLi	Ether	Phenyltrichloro- silane	Tris(2-phenoxyphenyl)phenyl silane	14	291
		2BuLi	Ether	Silicon tetra- chloride	10,10'-Spirobiphenoxasilin	25	292
		BuLi	Ether	Silicon tetra- chloride	Tetrakis(2-phenoxyphenyl)silane	12	29 1
		BuLi	Ether	Trimethylchloro- silane	(Oxy-di-o-phenylene)bis(tri- methylsilane)	60	289
		BuLi	Ether	Triphenylchloro- silane	2-Phenoxyphenyltriphenylsilane	67	291
$C_{12}H_{10}O_2S$	Diphenyl sulfone	BuLi 4BuLi	Ether Ether	Carbon dioxide Carbon dioxide	2-Carboxyphenyl phenyl sulfone Di(<i>o</i> -carboxyphenyl) sulfone	42-80 26	332, 335 324
		BuLi	Ether	Dimethyldichloro- silane	10,10-Dimethylphenothiasilin 5,5-dioxide	24	341
		BuLi	Ether	Diphenyldichloro- silane	10,10-Diphenylphenothiasilin 5,5-dioxide	8	341
$C_{12}H_{11}N$	2-Benzyl- pyridine	PhLi	Ether	β -Dimethylamino- ethyl chloride	1-(2-Pyridyl)-1-phenyl-3- dimethylaminopropane	7 9	иши
$C_{12}H_{12}O_3$	1,7-Dime-	BuLi	Ether	Carbon dioxide	1,7-Dimethoxy-6-carboxynaph- thalene	72	242
	thalene	BuLi	Ether	Dimethyl sulfate	1,7-Dimethoxy-6-methylnaph- thalene	75	242
		BuLi	Ether	N-Methylform- anilide	1,7-Dimethoxy-6-naphthaldehyde	84	242
$C_{12}H_{1\delta}FeN$	2-(Ferro- cenyl)ethyl- amine	BuLi	Ether	Ethyl formate	N-Formyl-2-(ferrocenyl)ethyl- amine	86	vvv
C12H16 O 8	m-Methoxy- phenyl 2- tetrahydro- pyranyl ether	BuLi	Ether	Carbon dioxide	2-Methoxy-6-hydroxybenzoic acid	26	300

	Compound metalated	RLi	Solvent	Reactant	Final product	7 yield	Ref
C ₁₂ H ₁₉ N	2,4,6-Tri- methylben- zyldimeth- ylamine	BuLi	Hexane Ether	Benzaldehyde	2-[2-(Dimethylaminomethyl)-3,5- dimethylphenyl]-1-phenyl- ethanol	81	381
C ₁₂ H ₂₀ Sn C ₁₂ H ₂₃ Si ₂	Tetraallyltin 1,3,3-Tris- (trimethyl- silyl)pro-	BuLi BuLi	Pentane Hexane	Carbon dioxide Trimethylchloro- silane	Vinylacetic acid 1,1,3,3-Tetra(trimethylsilyl)allene	36	<i>rrrr</i> 264
C ₁₃ H ₁₀	pyne Fluorene	BuLi	Hexane Ether	Benzhydryl chlo-	9-Benzhydrylfluorene	79	www
		BuLi	Hexane	Benzyl chloride	9-Benzylfluorene	58	www
		BuLi	Hexane	<i>n</i> -Butyl bromide	9- <i>n</i> -Butylfluorene	80	www
		BuLi	Ether	<i>p</i> -Chlorobenzyl chloride	9-(p-Chlorobenzyl)fluorene	68	q
		BuLi	Ether	<i>p</i> -Chlorophenyl styryl ketone	1-(p-Chlorophenyl)-3-phenyl-4- biphenylene-1-butanone	90	q
		BuLi	Ether	9-Diazofluorene	Fluorenone azine		xxx
		2PhLi	Ether	2-Benzyl chloride	9,9-Dibenzylfluorene	65	ууу
		PhLi	Ether	Benzyl chloride, formaldehyde	9-Benzyl-9-fluorene methanol	90	ууу
		PhLi	Etner	3-Bromo-1-pro- pyne	3-(9-Fluorenyi)-1-propyne	40	ZZZ
		Ph₂MeSiLi	THF	Carbon dioxide	Fluorene-9-carboxylic acid	61	406
		Mesityl- lithium		Carbon dioxide	Fluorene-9-carboxylic acid	54	172
		Ph₅Si₂Li	THF	Carbon dioxide	Fluorene-9-carboxylic acid	42	406
		PhLi		Carbon dioxide	Fluorene-9-carboxylic acid	78	172
		PhLi	EGDE	Carbon dioxide	Fluorene-9-carboxylic acid	25	407
		PhMe ₂ SiLi	THF	Carbon dioxide	Fluorene-9-carboxylic acid	58	406
		Polystyryl- lithium o-CH3-	Ether	Carbon dioxide	Fluorene-9-carboxylic acid	85	g 172
		C ₆ H ₄ Li		- · · · ·			
		Ph₃GeLi	THF	Carbon dioxide	Fluorene-9-carboxylic acid	66	271
		Ph₃GeLi	THF	Carbon dioxide	Fluorene-9-carboxylic acid	50	406
		Ph ₃ GeLi	EGDE	Carbon dioxide	Fluorene-9-carboxylic acid	09	407
		Ph ₃ PbLi	THE	Carbon dioxide	Fluorene-9-carboxylic acid	0.5	271
		Ph₃PbLi 2,4,6- Ph₃PhLi		Carbon dioxide	Fluorene-9-carboxylic acid	65	404 172
		Ph ₃ SiLi	THF	Carbon dioxide	Fluorene-9-carboxylic acid	41-69	271, 406
		Ph ₃ SnLi	THF	Carbon dioxide	Fluorene-9-carboxylic acid	17-31	271, 404
		BuLi	Ether Benzene	4,4'-Dichloro- benzophenone	(<i>p</i> , <i>p</i> '-Dichlorobenzhydrylidene)- fluorene		aaaa, bbbb
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Fluorene-9-(N,N-dimethyl- carboxamide		207
		PhLi	Ether	3,3-Diphenyl-1- bromopropane	1-Biphenylene-4,4-diphenyl-1,3- butadiene		сссс
		PhLi	Ether	1,3-Diphenyl-1- chloropropane	1-Biphenylene-2,4-diphenyl- butane		cccc
		PhLi	Ether	Diphenyldichloro- silane	Diphenylbis(9-fluorenyl)silane	11	dddd
		BuLi	Ether	2,3-Diphenyl- indone	2,3-Diphenyl-3-(9-fluorenyl)- indanone	83	q
		PhLi	Ether	6-Iodo-1-hexyne	6-(9-Fluorenyl)-1-hexyne	62	<i>ZZZ</i>
		PhLi	Ether	5-Iodo-1-pentyne	5-(9-Fluorenyl)-1-pentyne	68	222
		PhLi	Ether	11-Iodo-1- undecyne	11-(9-Fluorenyl)-1-undecyne	62	<i>ZZZ</i>
		BuLi	Ether	Nitrous oxide	Fluorenone azine	28	<i>xxx</i>
		PhLi	Ether	Nitrous oxide	Fluorenone azine	47	217 add=
		PhLi	Ether	rnenyltrichlor- silane	rnenyitris(9-nuorenyi)silane	41	aaaa
		Buti	Ether	pentadienone	renyl)-4-cyclopenten-1-one	14	ч

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
		BuLi	THF	Trimethylchloro-	9-Trimethylsilylfluorene	74	274
		2BuLi	THF	2-Trimethyl-	9,9-Di(trimethylsilyl)fluorene	84	274
		BuLi	Ether	Trimethylene	3-(9-Fluorenyl)-propanol-1	44	210
		n-PrLi	Ether	Triphenylchloro-	9-(Triphenylsilyl)fluorene	70	171
C13H10N2	1-Phenyl- benzimida- zole	PhLi	Ether	Carbon dioxide	1-Phenylbenzimidazole-2-carbox- ylic acid	25	eeee
$C_{13}H_{10}O$	Xanthene	BuLi	Ether	Carbon dioxide	Xanthene-9-carboxylic acid	51	fff
		Ph₃SiLi	THF	Carbon dioxide	Xanthene-9-carboxylic acid	37	271
		Ph₃SíLi	THF	chlorotriphenyl- silane	9-Triphenylsilylxanthene	14	271
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Xanthene-9-bis(N,N-dimethyl- carboxamide)		207
C13H10S	Thioxanthene	BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Thioxanthene-9-bis(N,N-dimeth- ylcarboxamide		207
$C_{13}H_{11}N$	5-Methyl- carbazole	BuLi	Ether	Carbon dioxide	N-Methylcarbazole-1-carboxylic acid	12	345
$C_{13}H_{11}NS$	N-Benzyl- thieno[3,2-	BuLi	Ether Hexane	Carbon dioxide	2-Carboxy-4-benzylthieno[3,2-b]- pyrrole	87	888 8
·	b]pyrrole	Excess BuLi	Ether	Carbon dioxide, diazomethane	4-(α-Carbomethoxybenzyl)-2,5- dicarbomethoxythieno[3,2-b]-	68	8888
C ₁₃ H ₁₁ NS	10-Methyl- pheno- thiazine	BuLi	Ether	Carbon dioxide	10-Methyl-1-phenothiazinecar- boxylic acid + 10-methyl-4- phenothiazinecarboxylic acid)))
		BuLi	Ether	Carbon dioxide	4- (or 2-) 10-Methylphenothi- azinecarboxylic acid	43	392
		BuLi	Ether	Dimethyl sulfate	4,10-Dimethylphenothiazine	25	jij
		BuLi	Ether	Ethylene oxide	4-β-Hydroxyethyl-10-methyl- phenothiazine	10	jjj
ı		BuLi	Ether	Formaldehyde	4-Hydroxymethyl-10-methyl- phenothiazine	10	<i>]]]</i>
		BuLi	Ether	N-Formyl-N- methylaniline	4-Formyl-10-methylphenothi- azine	10	jjj
		BuLi	Ether	Lithium acetate	4-Acetyl-10-methylphenothiazine	23	jjj
		BuLi	Ether	Lithium benzoate	4-Benzoyl-10-methylphenothi- azine	21	jjj
		BuLi	Ether	Lithium propio- nate	4-Propionyl-10-methylphenothi- azine	17	jjj
C ₁₃ H ₁₂	Diphenyl- methane	Li-naphtha- lene	THF	Carbon dioxide	Diphenylacetic acid	70	272
		Ph₃SiLi	THF	Carbon dioxide	Diphenylacetic acid	57	271
~ ~ ~	·	n-PrLi	Ether	Silane	Benzhydryltriphenyisilane	66	171
C ₁₃ H ₁₂ S	Phenyl benzyl sulfide	BuLi	Ether	Carbon dioxide	2-Phenyl-2-(phenylthio)acetic acid	75	329
$C_{13}H_{12}O_{2}S$	Phenyl benzyl sulfone	BuLi	Ether	Carbon dioxide	2-Phenyl-2-(phenylsulfonyl)acetic acid	65	329
C ₁₃ H ₁₂ O ₂ S	<i>p</i> -Tolyl phenyl sulfone	BuLi	Ether	Carbon dioxide	 2-Carboxy-4-methylphenyl phenyl sulfone (41) 2-Carboxy-4'-methylphenyl phenyl sulfone (59) 		334
$C_{12}H_{12}S_2$	Bis(phenyl- thio)meth-	BuLi	THF	Benzaldehyde	α -Phenyl- α -hydroxyacetaldehyde diphenyl thioacetal	87	330
	ane	BuLi	THF	Benzophenone	α, α -Diphenyl- α -hydroxyacetalde- hyde diphenyl thioacetal	80	330
		BuLi	THF	<i>n</i> -Butyl bromide	Pentanal diphenyl thioacetal	96	330
		Bull	IHF	Cyclohexanone	α -Hydroxycyclohexanecarbox- aldehyde diphenyl thioacetal	92	330

	Compound metalated	RLi	Solvent	Reactant	Final product	7% yield	Ref
		BuLi BuLi	THF	Deuterium oxide Methyl iodide	Bis(phenylthio)methane- α -d Acetaldehyde diphenyl thioacetal	78 67	330 330
C12H12N	N-Methyl- diphenyl- amine	BuLi	Ether	Carbon dioxide	N-Methyl-N-phenylanthranilic acid	14	345
C13H13N	10-Methyl- acridan	BuLi	Ether	Chlorotriphenyl- silane	10-Methyl-9-(triphenylsilyl)- acridan	81	tttt
C13H13OP	Diphenyl- methyl-	BuLi	Hexane Ether	Benzaldehyde	(2-Hydroxy-2-phenylethyl)- diphenyl phosphine oxide	31	458
	phosphine oxide	BuLi	Hexane Ether	Benzophenone	(2-Hydroxy-2,2-diphenylethyl)- diphenylphosphine oxide	81	458
C13H13P	Methyl- diphenyl-	BuLi	Ether	Carbon dioxide, sulfur	Carboxymethyldiphenylphos- phine sulfide	21	457
	phosphine	BuLi	Hexane Ether	Di-n-octylphos- phinyl chloride	[(Di-n-octylphosphinyl)(diphen- ylphosphinyl)]methane	25	458
		BuLi	Hexane Ether	Diphenylphos- phinyl chloride	Bis(diphenylphosphinyl)methane	25	458
		BuLi	Hexane Ether	3-Pentanone	(2-Ethyl-2-hydroxybutyl)- diphenylphosphine oxide	61	458
$C_{12}H_{14}$	3-Butylindene	BuLi	Ether	Ferrous chloride	Di(3-butylindenyl)iron	20	450
C13H17Fe	Isopropyl- ferrocene	BuLi	Ether	Trimethylchloro- silane	 3-Isopropyl-1-trimethylsilyl- ferrocene (30) 1 '-Isopropyl-1-trimethylsilyl- ferrocene (70) 		431
C18H17FeN	Dimethyl- amino-	BuLi	Ether Hexane	Acetone	2-(α,α-Dimethylhydroxymethyl)- dimethylaminomethylferrocene	14	439
	methyl- ferrocene	BuLi	Ether Hexane	Benzonitrile	2-(Dimethylaminomethyl)ferro- cenylphenone	58	439
		BuLi	THF	Benzophenone	2,1'-Di(α,α-diphenylhydroxy- methyl)dimethylaminomethyl- ferrocene	45	439
		BuLi	Ether Hexane	Benzophenone	2-(α,α-Diphenylhydroxymethyl)- dimethylaminomethylferrocene	71-75	438, 43 9
		BuLi	Ether Hexane	Deuterium oxide	Dimethylaminomethylferrocene- 2-d	72	439
		BuLi	THF	Deuterium oxide	Dimethylaminomethylferrocene- 2,1'-d	84	439
		BuLi	Ether Hexane	Hexachloroethane	2-Chlorodimethylaminomethyl- ferrocene	60	376
		BuLi	Ether Hexane	Phenyl isocyanate	2-(Dimethylaminomethyl)-N- phenylferrocenecarboxamide	31	439
		BuLi	Hexane	Trioxymethylene	1-Hydroxymethyl-2-dimethyl- aminomethylferrocene		hhhh
C18H20N	CH ₂ CH ₂ NM ₉₂ CH ₃	BuLi	Ether		2-n-Amyl-1,3,5-trimethylbenzene	67	bbb
C18H39OP	Di-n-hexyl- methyl-	BuLi	Hexane Ether	Acetaldehyde	Di-n-hexyl-(2-hydroxy-n-propyl)- phosphine oxide	44	458
	phosphine oxide	BuLi	Hexane Ether	Acetophenone	Di-n-hexyl-(2-hydroxy-2-phenyl- propyl)phosphine oxide	51	458
		BuLi	Hexane Ether	Benzaldehyde	Di-n-hexyl(2-hydroxyphenyl- ethyl)phosphine oxide	50	458
		BuLi	Hexane Ether	Benzophenone	Di-n-hexyl-(2-hydroxy-2,2-di- phenylethyl)phosphine oxide	49	458
		BuLi	Hexane Ether	Butyraldehyde	Di-n-hexyl-(2-hydroxy-n-pentyl)- phosphine oxide	33	458
		BuLi	Hexane Ether	Carbon dioxide	phine oxide	0/	430
		BuLi	Hexane Ether	phinyl chloride	nethane	30 33	428
		BuLi	Hexane Ether	Ethyl acetate	Acetonylai-n-hexylphosphine oxide	30	428
		BuLi	Hexane Ether	Ethyl benzoate	D1-n-hexylphenacylphosphine oxide	33	458

•	Compound metalated	RLi	Solvent	Reactant	Final product	7 yield	Ref
	···	BuLi	Hexane	3-Pentanone	(2-Ethyl-2-hydroxybutyl)-di- <i>n</i> -	46	458
C13H29P	Di- <i>n</i> -hexyl- methyl- phosphine	t-BuLi	Pentane	Carbon dioxide, sulfur	Carboxymethyl di- <i>n</i> -hexylphos- phine sulfide	46	457
C14H4Cl- NO2S	3-Chloro-4- dimethyl- amino- phenyl phenyl sulfone	BuLi	Ether	Carbon dioxide	3-Chloro-4-dimethylamino- phenyl phenyl sulfone 2-car- boxylic acid	83	342
C₁₄H₀Cl≵	1,1-Di(4- chloro- phenyl)- chloroeth- ylene	BuLi	THF Ether Hexane	Carbon dioxide	3,3-Di(4-chlorophenyl)-2-chloro- acrylic acid	88	203
C14H10	Diphenyl- acetylene	EtLi	Ether	Carbon dioxide	2-Phenyl-3-(o-carboxyphenyl)- 2-pentenoic acid + 2-phenyl- 3-ethylindone	12–15 12–15	1 25, 268
		BuLi	Ether	Carbon dioxide	2-Phenyl-3-(o-carboxyphenyl)- 2-heptenoic acid + 2-phenyl- 3-butylindone	14–15 15–28	125, 268
C14H10Cl9	1-Phenyl-1- <i>p</i> -chloro- phenyl- chloro- ethylene	BuLi	THF Ether Hexane	Carbon dioxid e	3-Phenyl-3- <i>p</i> -chlorophenyl-2- chloroacrylic acid	87	203
C14H10Cl3	2,2-Bis(o- chloro- phenyl)- chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Bis(<i>o</i> -chlorophenyl)-2-chloro- acrylic acid	76	201
C14H18C13	2,2-Bis(<i>p</i> - chloro- phenyl)- chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Bis(<i>p</i> -chlorophenyl)-2-chloro- acrylic acid	86	201
C ₁₄ H ₁₁ Cl	2,2-Diphenyl- chloro- ethylene	BuLi	THF Ether Hexane	Bromine	1,1-Diphenyl-2-chloro-2-bromo- ethylene	94	200
		BuLi	Ether THF	Carbon dioxide	3,3-Diphenyl-2-chloroacrylic acid	85 -9 4	1 99–201, 203
		BuLi	THF Ether Hexane	Iodine	1,1-Diphenyl-2-chloro-2-iodo- ethylene	98	200
		BuLi	THF Hexane Ether	Mercuric chloride	(1-Chloro-2,2-diphenylvinyl)- mercuric chloride + bis(1- chloro-2,2-diphenylvinyl)- mercury	18 69	200
		BuLi	THF Ether Hexane	Methyl iodide	1,1-Diphenyl-2-chloro-1-propene	86	200
		BuLi	THF Ether Pet_ether	Silver chloride	1-Chloro-2,2-diphenylvinylsilver		1 96
		BuLi	THF Ether Pet. ether	Silver chloride, bromine	2,2-Diphenyl-1-chloro-1-bromo- ethylene	77	1 96
C ₁₄ H ₁₁ N	1-Phenyl- indole	BuLi	Ether	Carbon dioxide	1-(o-Carboxyphenyl)-2-indole- carboxylic acid	15	355
C14H12	9,10-Dihydro-	Poly- <i>p</i> -sty-	Ether	Carbon dioxide	9,10-Dihydroanthracene-10-	38	g
	HILLIN GUCLIC	Ph _a SiLi	THF	Carbon dioxide	9,10-Dihydroanthracene-10- carboxylic acid	72	271

				Table VI (Continued)		07	
	Compound metalated	RLi	Solvent	Reactant	Final product	yield	Ref
		BuLi	Ether	N,N-Dimethyl- carbamoyl	9,10-Dihydroxyanthracenebis- (N,N-dimethylcarboxamide)		207
C14H12NS	10-Ethyl- phenothia-	BuLi		Benzophenone	4-(Diphenylhydroxymethyl)-10- ethylphenothiazine	55	kkk
	ZIIIE	BuLi	Ether	Carbon dioxide	10-Ethylphenothiazine-1-carbox- ylic acid + 10-ethylpheno-	13 14	jjj, iiii
		Ph₃SiLi	THF	Carbon dioxide	thiazine-4-carboxylic acid 10-Ethylphenothiazine-4-carbox- ylic acid	2	271
		BuLi	Ether	Lithium acetate	4-Acetyl-10-ethylphenothiazine	13	jjj
		BuLi	Ether	Lithium benzoate	4-Benzoyl-10-ethylphenothiazine	17	jjj
$C_{14}H_{13}N$	9-Ethyl- carbazole	BuLi	Ether	Carbon dioxide	9-Ethylcarbazole-1-carboxylic acid	2	157
		BuLi	Ether THF	Carbon dioxide	9-Ethylcarbazole-1-carboxylic acid	21	157
2 -		BuLi	THF	Carbon dioxide	9-Ethylcarbazole-1-carboxylic acid	1	157
		PhLi	THF	Carbon dioxide	9-Ethylcarbazole-1-carboxylic acid	10	157
		BuLi	Ether	Triphenylsilyl bromide	1-Triphenylsilyl-9-ethylcarbazole	12	ee
C ₁₄ H ₁₈ N	2-Methyl- 6-styryl-	PhLi	Ether	Propionaldehyde	2-Methyl-6-(α-benzhydryl-β- hydroxybutyl)pyridine		сс
C14H18NO	10-Ethylphen-	BuLi	Ether	Carbon dioxide	10-Ethylphenoxazine-4-carbox- vlic acid	66	284
	CAMERICO	MeLi	Ether	Carbon dioxide	10-Ethylphenoxazine-4-carbox- vlic acid	15	284
C14H18NOS	10-Ethyl- pheno-	BuLi	Ether	Carbon dioxide	4-Carbomethoxy-10-ethylpheno- thiazine		jjjj
	thiazine 5-oxide	BuLi	Ether	Iodine	4-Iodo-10-ethylphenothiazine	23))))
C14H18P	Diphenyl- vinyl- phosphine	BuLi	Ether Hexane	Carbon dioxide, sulfur	(α-Carboxy- <i>n</i> -hexyl)diphenyl- phosphine sulfide	45	459
$C_{14}H_{14}Cr$	Ditoluene-	BuLi		Carbon dioxide	Dilithium-chromium ditoluate		454
$C_{14}H_{14}O_{2}$	Ethylene	BuLi	Ether	Carbon dioxide	Ethylene glycol phenyl <i>o</i> -car- boxyphenyl ether	14	291
	diphenyl	BuLi	Ether	Triphenylchloro- silane	Ethylene glycol phenyl <i>o</i> -tri- phenylsilylphenyl ether	7	291
$C_{14}H_{14}O_2S$	<i>p</i> -Tolyl sulfone	BuLi	Ether	Carbon dioxide	2-Carboxy-4,4'-dimethylphenyl phenyl sulfone	53	335
$C_{14}H_{14}S_{2}$	Acetaldehyde diphenyl thioscetal	BuLi DABCO	THF	Benzophenone	α, α -Diphenyl- α -hydroxyacetone diphenyl thioketal	74	330
C14H15N	2-Methyl-5- phenethyl-	PhLi	Ether	Benzyl chloride	2-Methyl-6-(dibenzylmethyl)- pyridine CH:CH: CH	25	350
$C_{14}H_{21}Br$	β-Ionylidene- bromo-	BuLi	THF	Carbon dioxide		24	188
$C_{15}H_{13}$	3-Phenyl-	BuLi	Ether	Ferrous chloride	Di(3-phenylindenyl)iron	18	450
C ₁₅ H ₁₇ N	Dibenzyl methyl-	BuLi	Ether	Benzaldehyde	2-(Benzylmethylaminomethyl)- benzhydrol	56	374
	amine	BuLi	Ether	Deuterium oxide	Dibenzylmethylamine-2d		375
$C_{15}H_{18}OSi$	4-Trimethyl- silylphenyl	BuLi	THF	Dichlorodiphenyl- silane	2-Trimethylsilyl-10,10-diphenyl- phenoxasilin	17	290
C ₁₅ H ₈₂ Sn	Allyltri-n- butvltin	PhLi	Ether	4-Methyl-2- pentanone	4,6-Dimethyl-1-hepten-4-ol	70	kkkk
$C_{16}H_{10}$	Pyrene	BuLi	Ether	Carbon dioxide	Pyrene-1,2- and -3-carboxylic acid	85	280

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
	12H-Benzo- [a]pheno-	BuLi	Ether	Carbon dioxide	12H-benzo[a]phenothiazine-1- carboxylic acid	94	393
$C_{16}H_{11}NS$	12H-Benzo- [b]pheno- thiszine	BuLi	Ether Hexane	Carbon dioxide	12H-benzo[b]phenothiazine-11- carboxylic acid	82	395
C16H11NS	7H-Benzo- [c]pheno- thiazine	BuLi	Ether	Carbon dioxide	7H-benzo[c]phenothiazine-6- carboxylic acid	41	396
$C_{16}H_{14}$	3-Benzyl-	BuLi	Ether	Ferrous chloride	Di(3-benzylindenyl)iron	10	450
$C_{16}H_{14}Br_{2}O_{2}$	1,1-Bis-(p- methoxy- phenyl)- 2,2-di- bromo- ethylene	BuLi	THF	Carbon dioxide	α-Bromo-β-bis(p-methoxy- phenyl)acrylic acid	69	188
$C_{16}H_{16}Cl$	2,2-Dibenzyl- 1-chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Dibenzyl-2-chloroacrylic acid	92-93	190, 191
$C_{16}H_{16}Cl$	2,2-Bis- (p-tolyl)- chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Bis(p-tolyl)-2-chloroacrylic acid	78	199, 201, 203
$C_{16}H_{15}Cl$	2,2-Bis- (<i>o</i> -tolyl)- chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Bis(<i>o</i> -tolyl)-2-chloroacrylic acid	45	201
C16H15ClO2	2,2-Bis(<i>o</i> - methoxy- phenyl)- chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Bis(o-methoxyphenyl)-2- chloroacrylic acid	8	201 , 203
C16H18ClO2	2,2-Bis(p- methoxy- phenyl)- chloro- ethylene	BuLi	THF Ether Pet. ether	Carbon dioxide	3,3-Bis(<i>p</i> -methoxyphenyl)-2- chloroacrylic acid	67	199, 2 01, 203
C18H15Fe	α-Ferrocenyl- fulvene	PhLi	Ether	Ferrous chloride	1,1'-Di(α-ferrocenylbenzyl)- ferrocene	21	45 2
$C_{16}H_{17}Si$	9-Trimethyl- silvl-	BuLi	Ether	Methyl iodide	9-Methyl-9-(trimethylsilyl)- fluorene	31	1111
	fluorene	BuLi	Ether	Trimethylchloro- silane	9,9-Di(trimethylsilyl)fluorene	17	1111
$C_{16}H_{18}$	2-Phenyl-2- <i>p</i> -tolyl- propane	BuLi	Ether	Carbon dioxide	p-(α,α-Dimethylbenzyl)phenyl- acetic acid		mm mm
C16H18O2S	4-t-Butyl- phenyl phenyl sulfone	BuLi	Ether	Carbon dioxide	2-Carboxy-4'- <i>t</i> -butylphenyl phenyl sulfone (69) + 2- carboxy-4- <i>t</i> -butylphenyl phenyl sulfone (31)		337
$C_{16}H_{19}N$	2-Methyl- benzyl-	BuLi	Hexane Ether	Benzonitrile	2-(Dimethylaminomethyl)benzyl phenyl ketone	68	381
	dimethyl- aniline	BuLi	Hexane Ether	Benzophenone	2-[α-(Dimethylamino)-o-tolyl]- 1,1,2-triphenylethanol	88	381
$C_{16}H_{22}O_4$	Hydroqui- nonebis- (2-tetrahy- dropyranyl) ether	BuLi	Ether	Carbon dioxide	2,5-Dihydroxybenzoic acid	65	301
C₁₀H₃₄Sn	Methallyltri- phenyltin	PhLi	Ether	Acetaldehyde	2-Methyl-1-penten-4-ol	59	495
C ₁₈ H ₁₂ NO	10-Phenyl- phenox-	BuLi	Ether	Carbon dioxide	10-Phenylphenoxazine-4-carbox- ylic acid	Trace	284
	azine	MeLi	Ether	Carbon dioxide	10-Phenylphenoxazine-4-carbox- ylic acid	Trace	284

	Compound metalated	RLi	Solvent	Reactant	Final product	% yield	Ref
C18H15OP	Triphenyl-	EtLi	Ether	Benzophenone	$(C_{6}H_{5})_{2}P(O)CH(CH_{3})C(OH)$ -	84	461
	oxide	MeLi	Ether	Benzophenone	$(C_{s}H_{s})_{2}$ $(C_{s}H_{s})_{2}$ $(C_{s}H_{s})_{2}$ $(O)CH_{2}C(OH)(C_{s}H_{s})_{2}$	74	461
	ende	EtLi	Ether	Carbon dioxide	2-(Diphenylphosphinyl)propionic acid	50	460, 461
		MeLi	Ether	Carbon dioxide	Diphenylphosphinylacetic acid	47	460, 461
		MeLi	Ether	Diphenylchloro- phosphine, sulfur	$(C_6H_6)_2P(O)CH_2P(S)(C_6H_6)_2$	25	461
		EtLi	Ether	Hydrobromic acid	Ethyl diphenylphosphine oxide	78	461
		MeLi	Ether	Hydrobromic acid	Methyl diphenylphosphine oxide	76	461
		MeLi	Ether	Triphenylchloro- silane	(Diphenylphosphinylmethyl)- triphenylsilane	65	461
		BuLi	Ether	Triphenyltin chloride	$(C_6H_6)_2P(O)CH[Sn(C_6H_5)_3]-$ CH ₂ CH ₂ CH ₃	69	461
		EtLi	Ether	Triphenyltin chloride	$(C_{6}H_{5})_{2}P(O)CH(CH_{8})Sn(C_{6}H_{5})_{8}$	81	460, 461
		MeLi	Ether	Triphenyltin	(Diphenylphosphinylmethyl)-	76	460, 461
C ₁₈ H ₁₆ PS	Triphenyl-	MeLi	THF Ether	Carbon dioxide	Carboxymethyldiphenylphos-	39	460, 462
	sulfide	MeLi	Ether	Triphenyltin	Triphenylstannylmethyldiphenyl-	74	460
	Sunde	MCGI	THE	chloride	nhosphine sulfide		100
C.H.Ge	Triphenyl-	BuLi	Ether	Acetone	2-Triphenylgermyl-2-propanol	46	403
CisfligGe	germane	BuLi	Ether	Acetophenone	1-Triphenylgermyl-1-phenyl-1- ethanol	68	403
		BuLi	THF	Acetyl chloride	1,1-Bis(triphenylgermyl)-1- ethanol	85	401
		BuLi	THF	Acetyl chloride	1,1-Bis(triphenylgermyl)-1- ethanol	67	401
		BuLi	Ether	Benzophenone	Triphenylgermyldiphenyl- carbinol	81	403
		BuLi	THF	Benzoyl chloride	Bis(triphenylgermyl)phenyl- carbinol	49	401
		BuLi	THF	Benzoyl chloride	Benzoyltriphenylgermane	80	401
		BuLi	THF	Benzoyltriphenyl- germane	1,1-Bis(triphenylgermyl)phenyl- carbinol	57	401
		BuLi	Ether	2-Butanone	2-Triphenylgermyl-2-butanol	37	403
		BuLi	Ether	Carbon dioxide	Triphenylgermanecarboxylic acid	97	400
		MeLi	Ether	Carbon dioxide	Triphenylgermanecarboxylic acid	77	400
		PhLi	Ether	Carbon dioxide	Triphenylgermanecarboxylic acid	83	400
		BuLi	Ether	Di-n-propyl ketone	4-Triphenylgermyl-4-heptanol	48	403
		BuLi	THF	<i>p</i> -Fluorobenzoyl chloride	Bis(triphenylgermyl)-p-fluoro- phenylcarbinol	60	401
		BuLi	Ether	Isobutyrophenone	1-Triphenylgermyl-1-phenyl-2- methyl-1-propanol	84	403
		BuLi	THF	<i>p</i> -Methoxybenzoyl chloride	<i>p</i> -Methoxybenzoyltriphenyl- germane	84	401
		BuLi	Ether	3-Pentanone	3-Triphenylgermyl-3-pentanol	70	403
		BuLi	THF	Propionyl chloride	1,1-Bis(triphenylgermyl)-1- propanol	37	401
		BuLi	Ether	<i>p</i> -Trifluoromethyl- benzoyl chlo- ride	<i>p</i> -Trifluoromethylbenzoyltri- phenylgermane	44	401
C ₁₈ H ₁₆ Si	Triphenyl-	Ph₃SiLi	Ether	Carbon dioxide	Triphenylacetic acid,	22	405, <i>nnnn</i>
	silane		Benzene		triphenylsilanol	46	
		Ph₃SiLi	EGDE	Carbon dioxide	Hexaphenyldisilane,	14	405, <i>nnnn</i>
			Ether		tetraphenylsilane	11	
C18H29O	Duryl <i>o</i> -tolyl ketone	BuLi	Ether	Carbon dioxide	o-Duroylphenylacetic acid	17	270
C ₁₈ H ₂₂ O ₂ S	Dimesityl sulfone	BuLi	Ether	Carbon dioxide	Monocarboxydimesityl sulfone	25	334
C18H23PS	Diphenyl- <i>n</i> -hexyl- phosphine sulfide	BuLi	Ether Hexane	Carbon dioxide	(α-Carboxy-n-hexyl)diphenyl- phosphine sulfide	12	459

I doit / I (Commune)

	Compound			Tuble VI (Communeu)		%	
	metalated	RLi	Solvent	Reactant	Final product	yield	Ref
$C_{19}H_{14}$	9-Phenyl- fluorene	BuLi PhLi	Ether	Carbon dioxide Carbon dioxide	9-Phenylfluorene-9-carboxylic acid 9-Phenylfluorene-9-carboxylic acid	80 80	298 172
$C_{19}H_{16}$	2-Benzyl- bipbenyl	BuLi	Ether	Carbon dioxide	Phenyl-o-xenylacetic acid	25	0000
$C_{19}H_{16}$	4-Benzyl-	BuLi	Ether	Carbon dioxide	Phenyl-p-xenylacetic acid	41	0000
C ₁₉ H ₁₆	Triphenyl- methane	BuLi	Ether	Carbon dioxide	Triphenylacetic acid	71	405, <i>nnnn</i> ,
		BuLi Excess	THF	Carbon dioxide	Triphenylacetic acid	87	170
		PhLi	Ether	Carbon dioxide	Triphenylacetic acid	6	172
		o-CH ₂- C₅H₄Li		Carbon dioxide	Triphenylacetic acid	8	172
		Ph₂SiLi	EGDE	Carbon dioxide	Triphenylacetic acid	37	405, <i>nnnn</i>
		BuLi	Ether	N,N-Dimethyl- carbamoyl chloride	Triphenyl-N,N-dimethylacet- amide		207
		n-PrLi	Ether	Triphenylchloro- silane	Triphenylmethyltriphenylsilane	34	205
		n-PrLi	Ether	Trimethylchloro- silane	Trimethyl(triphenylmethyl)silane	70	88
C19H17OP	Diphenyl- benzylphos- phine oxide	PhLi	Ether	Benzaldehyde	Diphenyl(1,2-diphenyl-2-hy- droxy-2-ethyl)phosphine oxide	90	PPPP, 9999
		PhLi	Ether	Carbon dioxide	Diphenyl(α -carboxybenzyl)phos- phine oxide	65	рррр
C20H12NS	14 H- Dibenzo- [<i>a</i> , <i>c</i>]pheno- thiazine	BuLi	Hexane Ether	Carbon dioxide	Lactam of 1-carboxy-14H- dibenzo[a,c]phenothiazine	85	394
C20H13NS	14 H-Dibenzo- [<i>a</i> , <i>h</i>]pheno- thiazine	BuLi	Hexane Ether	Carbon dioxide	1-Carboxy-14H-dibenzo[a,h]- phenothiazine	80	3 9 4
C30H13NS	7H-Dibenzo- [<i>a</i> , <i>h</i>]pheno- thiazine	BuLi	Hexane Ether	Carbon dioxide	6-Carboxy-7H-dibenzo[c,k]- phenothiazine	77	394
C20H16	9-Benzyl- fluorene	PhLi	Ether	Dibromomethane	9-Bromomethyl-9-benzylfluorene	61	ууу
C20H16S	Phenyl (2,2- diphenyl)- vinyl sul- fide	BuLi	THF	Deuterium oxide	Phenyl (2,2-diphenyl)vinyl-1 <i>-d</i> sulfide	87	330
C20H18O	Triphenyl-	BuLi	Ether	Carbon dioxide	3,3-Diphenylphthalide	18	172, 298
	methyl methyl	PhLi	Ether	Carbon dioxide	9-Phenylfluorene-9-carboxylic acid	13-57	172, 298
	ether	BuLi	Ether	Water	9-Phenylfluorene	20	298
		PhLi	Ether	Water	9-Phenylfluorene	71	29 8
CnH₁8Si	I-(Triphenyl-	PhLi	THF	Triphenylsilane	1,3-Bis(triphenylsilyl)propyne	32	411
	silyl)pro- pyne	PhLi	THF	Chlorotriphenyl- silane	Tris(triphenylsilyl)propadiene	23	411
		Ph ₃S iLi	Ether	Chlorotriphenyl-	1,3-Bis(triphenylsilyl)propyne 1,3-Bis(triphenylsilyl)propyne	13 5	411
		Ph ₂S iLi	THF	Chlorotriphenyl-	1,2-Bis(triphenylsilyl)propene	18	411
CHSn	Allultri_	Phi	Ether	sindlie n-Amyliodide	1-Octene	32 52	****
$C_{21}H_{20}Sn$	phenvitin	PhLi	Ether	Carbon dioxide	Vinvlacetic acid	25	kkkk
	PricityItill	PhLi	Ether	4-Methyl-2-	4,6-Dimethyl-1-hepten-4-ol	65	kkkk,
		PhLi	Ether	Tri- <i>n</i> -butyltin chloride	Allyltri-n-butyltin	69	rrrr
		PhLi	Ether	Triphenyl germa- nium bromide	Allyltriphenylgermane	54	rrrr
		PhLi	Ether	Triphenylchloro- silane	Allyltriphenylsilane	74	kkkk, rrrr

	Table VI (Continued)						
	Compound metalated	RLi	Solvent	Reactant	Final product	yield	Ref
C22H16	9-Cinnamyl- idenefluo-	PhLi PhLi	Ether Ether	Triphenylsilane Water	Allyltriphenylsilane 1,1-Biphenylene-4,4-diphenyl- 2-butene	60	rrrr cccc
$C_{22}H_{20}Si$	rene 1-(Triphenyl- silyl)-1-	PhLi	THF	Triphenylsilane	1,3-Bis(triphenylsilyl)-1-butyne		411
C ₂₂ H ₂₂ Sn	Methallyltri- phenyltin	PhLi	Ether	Acetaldehyde	2-Methylpent-1-en-4-ol	53	rrrr
		PhLi	Ether	Triethylbromo- silane	Triethylmethallylsilane	68	rrrr
C ₂₃ H ₂₀ FeO	Diphenyl- ferrocenyl-	BuLi	Ether	Carbon dioxide	2-Carboxydiphenylferrocenyl- carbinol	73	303
	carbinol	BuLi	Ether	Methyl iodide	2-Methyldiphenylferrocenyl- carbinol	69	303
C24H20	Triphenyl- methyl- cyclopenta- diene	PhLi	Ether THF	Ferric chloride	1,1'-Bis(triphenylmethyl)- ferrocene	18	pp
C ₂₅ H ₂₂ Si	Triphenyl- benzyl- silane	BuLi	Ether	Carbon dioxide	Phenylacetic acid	43	399
$C_{25}H_{22}Sn$	Triphenyl- benzyltin	PhLi	Ether	Carbon dioxide	Phenylacetic acid	39	<u> 55555</u>
C26H20Si	Triphenyl- (phenethyn- yl)silane	BuLi	Ether	Carbon dioxide	Phenylpropiolic acid	19	399
$C_{26}H_{22}O$	Dibenzhydryl ether	BuLi	Benzene Ether	Carbon dioxide	Di(o-carboxy)benzhydryl ether	Low	299
C38H27FeNO	2-(α,α-Di- phenyl- hydroxy- methyl)- dimethyl- amino- methyl- ferrocene	BuLi	THF	Benzophenone	2,1'-Di(α,α-diphenylhydroxy- methyl)dimethylaminomethyl- ferrocene	71	439
$C_{28}H_{22}$	1,4-Diphenyl- enebutane	PhLi	Ether	Benzyl chloride	1,4-Dibenzyl-1,4-dibiphenylene- butane	65	ууу
$C_{20}H_{56}B_2$	1,1-Di(cyclo-	BuLi	THF	Benzaldehyde	1-Phenylhept-1-ene	45-50	486
	hexyl-	BuLi	THF	Benzophenone	1,1-Diphenylhept-1-ene	45-50	486
	boronyl)- hexane	BuLi	THF Heptane	Carbon dioxide	2-Pentylmalonic acid	6570	485
		BuLi	THF	Cholestanone	3- <i>n</i> -Hexylidene-5- α -cholestane	20–25	486
		BuLi	THF	Cyclohexanone	n-Hexylidenecyclohexane	20-25	486
	— · · · ·	BuLi	THF	Di- <i>n</i> -amyl ketone	6- <i>n</i> -Amylundec-6-ene	30-35	486
C _{\$1} H ₂₆ Sn	(diphenyl-	BuLi	THF	Benzyl chloride	silane	25	257
	methyl)- silane	BuLi	Ether THF	Dimethyl sulfate	silane	58	257
$C_{39}H_{32}Si_2$	1,3-Bis(tri- phenylsilyl-	Ph₃SiLi	THF	chlorotriphenyl- silane	Tris(triphenylsilyl)propadiene	51	411
	propyne	PhLi	THF	Methyl iodide	1,3-Bis(triphenylsilyl)-1-butyne		411
C57H46Sis	Tris(tri- phenyl-	PhLi	THF	Chlorotriphenyl- silane	Tetrakis(triphenylsilyl)propa- diene	14	411
	silyl)- propadiene	PhLi	THF	Deuterium oxide	Tris(triphenylsilyl)propadiene- 1-d	88	411
		PhLi	THF	Methyl iodide	1,1,3-Tris(triphenylsilyl)-1,2- butadiene	67	411

^e R. Huttel and M. E. Schon, Ann., **625**, 55 (1959). ^b M. Wieber and C. D. Frohning, Angew. Chem., Intern. Ed. Engl., **5**, 966 (1966). ^e V. I. Stanko and A. I. Klimova, J. Gen. Chem. USSR, **35**, 1142 (1965). ^a P. Moses and S. Gronowitz, Arkiv Kemi, **18**, 119 (1961); Chem. Abstr., **56**, 10173 (1962). ^e Ya. L. Gol'dfarb, Ya. L. Danyushevskii, and M. A. Vinogradova, Proc. Acad. Sci. USSR, **151**, 539 (1963). ^f H. Gilman and T. N. Goreau, J. Org. Chem., **17**, 1470 (1952). ^g D. Braun and E. Seelig, Chem. Ber., **97**, 3098 (1964). ^h F. J. Villani and C. A. Ellis, J. Org. Chem., **29**, 2585 (1964). ⁱ S. Oshiro, J. Pharm. Soc. Japan, **75**, 658 (1955); Chem. Abstr., **50**, 3436 (1956). ^j R. D. Schuetz, D. D. Taft, J. P. O'Brien, J. L. Shea, and H. M. Mork, J. Org. Chem., **28**, 1420 (1963). ^k J. C. W. Postma and J. F. Arens, Rec. Trav. Chim., **75**, 1408 (1956). ⁱ J. F. Arens, H. C. Volger, T. Doornbos, J. Bonnema, J. W. Greidanus, and J. H. van der Hende, *ibid.*, **75**, 1459 (1956).

^m G. Wittig and R. Polster, Ann., 599, 1 (1956). ⁿ W. J. Linn and W. H. Sharkey, J. Am. Chem. Soc., 79, 4970 (1957). ^o D. N. Kursanov, N. K. Baranetskaya, and V. N. Setkina, Dokl. Akad. Nauk, SSSR, 113, 116 (1957); Chem. Abstr., 51, 14711 (1957). P. H. S. Nametkin, T. I. Chernysheva, and L. V. Babaré, J. Gen. Chem. USSR, 34, 2270 (1964); Chem. Abstr., 61, 9525 (1964). 9 E. D. Bergmann, G. Berthier, D. Ginsburg, Y. Hirshberg, D. Lavie, S. Pinchas, B. Pullman, and A. Pullman, Bull. Soc. Chim. France, 661 (1951). 'W. von E. Doering and C. H. DePuy, J. Am. Chem. Soc., 75, 5955 (1953). * W. R. Biggerstaff and K. L. Stevens, J. Org. Chem., 28, 733 (1963). * W. Herz and L. Tsai, J. Am. Chem. Soc., 77, 3529 (1955). * Ya. L. Gol'dfarb, M. A. Kalik, and M. L. Kirmalova, J. Gen. Chem. USSR, 29, 3592 (1959). * C. Osuch and R. Levine, J. Am. Chem. Soc., 78, 1723 (1956). * G. Jones and H. D. Law, J. Chem. Soc., 3631 (1958). * J. A. Gautier, I. Marszak, and M. Miocque, Bull. Soc. Chim. France, 415 (1958). * B. M. Mikhailov, G. S. Ter-Sarkisyan, and F. B. Tutorskaya, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 831 (1959); Chem. Abstr., 54, 1416 (1960). * N. J. Leonard and A. S. Hay, J. Am. Chem. Soc., 78, 1984 (1956). aa N. N. Goldberg, L. B. Barkley, and R. Levine, ibid., 73, 4301 (1951). bb B. M. Mikhailov and G. S. Ter-Sarkisyan, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1267 (1960); Chem. Abstr., 55, 542 (1961). ∞ V. Hnevsova and I. Ernst, Collect. Czech. Chem. Commun., 25, 1468 (1960); Chem. Abstr., 54, 17393 (1960). dd D. Grafstein, J. Bobinski, J. Dvorak, J. E. Paustian, H. F. Smith, S. Karlan, C. Vogel, and M. M. Fein, Inorg. Chem., 2, 1125 (1963). * R. H. Meen and H. Gilman, J. Org. Chem., 20, 73 (1955). 11 L. Santucci, L. Tavoletti, and D. Montalbano, Ric. Sci. Rend., A2, 46 (1962); Chem. Abstr., 58, 4460 (1963). ⁴⁹ H. Gilman, L. F. Cason, and H. G. Brooks, J. Am. Chem. Soc., 75, 3760 (1953). th N. N. Goldberg and R. Levine, *ibid.*, 77, 4926 (1955). ⁱⁱ E. N. Karaulova, D. Sh. Meilanova, and G. D. Gal'pern, Dokl. Akad. Nauk SSSR, 123, 99 (1958); Chem. Abstr., 53, 5229 (1959). ⁱⁱ E. N. Karaulova, D. Sh. Meilanova, and G. D. Gal'pern, J. Gen. Chem. USSR, 30, 3262 (1960); Chem. Abstr., 55, 19892 (1961). * E. N. Karaulova, D. Sh. Meilanova, and G. D. Gal'pern, Khim. Sera-i Azotorgan. Soedin., Soderzhashch. v Neft. i Nefteprod., Akad. Nauk SSSR, Bashkirsh. Filial, 3, 25 (1960); Chem. Abstr., 59, 1568 (1963). ¹¹ J. E. Banfield, W. Davies, N. W. Gamble, and S. Middleton, J. Chem. Soc., 4791 (1956). ^{mm} R. Gaertner, J. Am. Chem. Soc., 74, 766 (1952). ** G. Vasilev, Compt. Rend. Acad. Bulgare Sci., 10, 125 (1957); Chem. Abstr., 52, 5352 (1958). ** O. Meth-Cohn and S. Gronowitz, Acta Chem. Scand., 20, 1733 (1966). PP W. F. Little and R. C. Koestler, J. Org. Chem., 26, 3247 (1961). PD Seyferth and M. A. Weiner, Chem. Ind. (London), 402 (1959). rr L. I. Zakharkin and A. I. L'vov, J. Gen. Chem. USSR, 36, 777 (1966); Chem. Abstr., 65, 8939 (1966). " L. H. Sommer and N. S. Marans, J. Am. Chem. Soc., 73, 5135 (1951). " H. Hock and F. Ernst, Chem. Ber., 92, 2716 (1959). " L. S. Miller, Iowa State Coll. J. Sci., 26, 249 (1952); Chem. Abstr., 48, 143 (1954). ** H. F. Herbrandson and D. S. Mooney, J. Am. Chem. Soc., 79, 5809 (1957). ** J. G. Traynham, J. Sci. Lab., Denison Univ., 42, Art. 4/5, 60 (1951); in Denison Univ. Bull., 51, No. 1 (1951). ** F. N. Jones and C. R. Hauser, J. Org. Chem., 27, 701 (1962). vy J. G. Cannon and G. L. Webster, J. Am. Pharm. Assoc., 46, 416 (1957). "H. Watanabe, I. Motoyama, and K. Hata, Bull. Chem. Soc. Japan, 39, 784 (1966). and A. N. Nesmeyanov, E. G. Perevalova, L. I. Leont'eva, and Yu. A., Ustynyuk, Izv. Akad. Nauk SSSR, Ser. Khim., 556 (1966); Chem. Abstr., 65, 7214 (1966). bb C. R. Hauser, J. K. Lindsay, and D. Lednicer, J. Org. Chem., 23, 358 (1958). ** K. Hata, I. Motoyama, and H. Watanabe, Bull. Chem. Soc. Japan, 36, 1698 (1963); Chem. Abstr., 60, 6865 (1964). ddd K. Hata, I. Motoyama, and H. Watanabe, Bull. Chem. Soc. Japan, 37, 1719 (1964); Chem. Abstr., 62, 4051 (1965). eee Ya. L. Gol'dfarb and M. L. Kirmalova, J. Gen. Chem. USSR, 29, 881 (1959). 111 L. Horner, W. D. Balzer, and D. J. Peterson, Tetrahedron Letters, 3315 (1966). 000 R. Huisgen and H. Rist, Ann., 594, 137 (1955). hah H. Gilman and J. A. Beel, J. Am. Chem. Soc., 73, 774 (1951). iii W. Baker, A. J. Boulton, C. R. Harrison, and J. F. W. McOmie, Proc. Chem. Soc., 414 (1964). iii G. Cauquil, A. Casadevall, and E. Casadevall, Bull. Soc. Chim. France, 1049 (1960). ^{kkk} R. D. Nelson, Iowa State Coll. J. Sci., 27, 229 (1953); Chem. Abstr., 48, 2069 (1954). ¹¹¹ G. Cauquil, E. Casadevall, and A. Casadevall, Compt. Rend., 243, 159 (1956). mmm H. Gilman and H. A. McNinch, J. Org. Chem., 27, 1889 (1962). nnn H. Gilman and D. R. Swayampati, ibid., 21, 1278 (1956). 200 I. M. Panaiotov and G. Borisov, Compt. Rend. Acad. Bulgare Sci., 9, 27 (1956); Chem. Abstr., 52, 7189 (1958). ppp I. M. Panaiotov, Compt. Rend. Acad. Bulgare Sci., 9, 25 (1956); Chem. Abstr., 52, 1974 (1958). eva T. L. Katz and J. Schulman, J. Am. Chem. Soc., 86, 3169 (1964). rrr J. M. Davidson and C. M. French, J. Chem. Soc., 191 (1960). *** D. Wittenberg, D. Aoki, and H. Gilman, J. Am. Chem. Soc., 80, 5933 (1958). *** L. Skatteboel, Acta Chem. Scand., 13, 1460 (1959). *** S. Raynolds and R. Levine, J. Am. Chem. Soc., 82, 1152 (1960). vvv J. M. Osgerby and P. L. Pauson, J. Chem. Soc., 4600 (1961). www W. S. Murphey and C. R. Hauser, J. Org. Chem., 31, 85 (1966). zzz F. M. Beringer, J. A. Farr, Jr., and S. Sands, J. Am. Chem. Soc., 75, 3984 (1953). vvv G. Wittig, P. Davis, and G. Koenig, Chem. Ber., 84, 627 (1951). *** J. A. Gautier, M. Miocque, and H. Moskowitz, J. Organmetal. Chem., 1, 212 (1964). aaaa E. D. Bergmann, E. Fischer, Y. Hirshberg, and D. Lavie, Bull. Soc. Chim. France, 709 (1952). bbb E. D. Bergmann, Y. Hirshberg, D. Lavie, Y. Sprinzak, and J. Szmuszkovicz, ibid., 703 (1952). ecc E. D. Bergmann and Z. Pelchowicz, ibid., 809 (1953). ddd H. Gilman and J. Goodman, J. Org. Chem., 22, 45 (1957). **** B. A. Tertov, N. A. Ivankova, and A. M. Simonov, J. Gen. Chem. USSR. 32, 2939 (1962). 1111 R. Nakai, M. Sugii, and H. Tomono, J. Pharm. Soc. Japan, 75, 1014 (1955); Chem. Abstr., 50, 4930 (1956). 0000 E. T. Holmes and H. R. Snyder, J. Org. Chem., 29, 2155 (1964). hhhh J. Tirouflet and C. Moise, Compt. Rend., Ser. C, 262, 1889 (1966). iii G. Cauquil, A. Casadevall, and E. Casadevall, ibid., 243, 590 (1956). iiii H. Gilman, R. K. Ingham, J. F. Champaigne, Jr., J. W. Diehl, and R. O. Ranck, J. Org. Chem., 19, 560 (1954). **** D. Seyferth and M. A. Weiner, ibid., 24, 1395 (1959). 1111 C. Eaborn and R. A. Shaw, J. Chem. Soc., 1420 (1955). ***** H. E. Zimmerman and A. Zweig, J. Am. Chem. Soc., 83, 1196 (1961). nnnn A. G. Brook and H. Gilman, ibid., 76, 2333 (1954). . Chem. Soc., 83, 1196 (1961). . and R. Thedford, J. Org. Chem., 27, 2383 (1962). ppp L. Horner, H. Hoffmann, H. Wippel, and G. Klahre, Chem. Ber., 92, 2499 (1959). araa L. Horner and W. Klink, Tetrahedron Letters, 2467 (1964). "" D. Seyferth and M. A. Weiner, J. Org. Chem., 26, 4797 (1961). "" H. Gilman and S. D. Rosenberg, ibid., 24, 2063 (1959). **** H. Gilman and G. Lichtenwalter, ibid., 23, 1586 (1958).